1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
|
<HTML>
<HEAD><TITLE>MB04UD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB04UD">MB04UD</A></H2>
<H3>
Column echelon form by unitary transformations for a rectangular matrix (added functionality)
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute orthogonal transformations Q and Z such that the
transformed pencil Q'(sE-A)Z has the E matrix in column echelon
form, where E and A are M-by-N matrices.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB04UD( JOBQ, JOBZ, M, N, A, LDA, E, LDE, Q, LDQ,
$ Z, LDZ, RANKE, ISTAIR, TOL, DWORK, INFO )
C .. Scalar Arguments ..
CHARACTER JOBQ, JOBZ
INTEGER INFO, LDA, LDE, LDQ, LDZ, M, N, RANKE
DOUBLE PRECISION TOL
C .. Array Arguments ..
INTEGER ISTAIR(*)
DOUBLE PRECISION A(LDA,*), DWORK(*), E(LDE,*), Q(LDQ,*), Z(LDZ,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
JOBQ CHARACTER*1
Indicates whether the user wishes to accumulate in a
matrix Q the unitary row permutations, as follows:
= 'N': Do not form Q;
= 'I': Q is initialized to the unit matrix and the
unitary row permutation matrix Q is returned;
= 'U': The given matrix Q is updated by the unitary
row permutations used in the reduction.
JOBZ CHARACTER*1
Indicates whether the user wishes to accumulate in a
matrix Z the unitary column transformations, as follows:
= 'N': Do not form Z;
= 'I': Z is initialized to the unit matrix and the
unitary transformation matrix Z is returned;
= 'U': The given matrix Z is updated by the unitary
transformations used in the reduction.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
M (input) INTEGER
The number of rows in the matrices A, E and the order of
the matrix Q. M >= 0.
N (input) INTEGER
The number of columns in the matrices A, E and the order
of the matrix Z. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading M-by-N part of this array must
contain the A matrix of the pencil sE-A.
On exit, the leading M-by-N part of this array contains
the unitary transformed matrix Q' * A * Z.
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,M).
E (input/output) DOUBLE PRECISION array, dimension (LDE,N)
On entry, the leading M-by-N part of this array must
contain the E matrix of the pencil sE-A, to be reduced to
column echelon form.
On exit, the leading M-by-N part of this array contains
the unitary transformed matrix Q' * E * Z, which is in
column echelon form.
LDE INTEGER
The leading dimension of array E. LDE >= MAX(1,M).
Q (input/output) DOUBLE PRECISION array, dimension (LDQ,*)
On entry, if JOBQ = 'U', then the leading M-by-M part of
this array must contain a given matrix Q (e.g. from a
previous call to another SLICOT routine), and on exit, the
leading M-by-M part of this array contains the product of
the input matrix Q and the row permutation matrix used to
transform the rows of matrix E.
On exit, if JOBQ = 'I', then the leading M-by-M part of
this array contains the matrix of accumulated unitary
row transformations performed.
If JOBQ = 'N', the array Q is not referenced and can be
supplied as a dummy array (i.e. set parameter LDQ = 1 and
declare this array to be Q(1,1) in the calling program).
LDQ INTEGER
The leading dimension of array Q. If JOBQ = 'U' or
JOBQ = 'I', LDQ >= MAX(1,M); if JOBQ = 'N', LDQ >= 1.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ,*)
On entry, if JOBZ = 'U', then the leading N-by-N part of
this array must contain a given matrix Z (e.g. from a
previous call to another SLICOT routine), and on exit, the
leading N-by-N part of this array contains the product of
the input matrix Z and the column transformation matrix
used to transform the columns of matrix E.
On exit, if JOBZ = 'I', then the leading N-by-N part of
this array contains the matrix of accumulated unitary
column transformations performed.
If JOBZ = 'N', the array Z is not referenced and can be
supplied as a dummy array (i.e. set parameter LDZ = 1 and
declare this array to be Z(1,1) in the calling program).
LDZ INTEGER
The leading dimension of array Z. If JOBZ = 'U' or
JOBZ = 'I', LDZ >= MAX(1,N); if JOBZ = 'N', LDZ >= 1.
RANKE (output) INTEGER
The computed rank of the unitary transformed matrix E.
ISTAIR (output) INTEGER array, dimension (M)
This array contains information on the column echelon form
of the unitary transformed matrix E. Specifically,
ISTAIR(i) = +j if the first non-zero element E(i,j)
is a corner point and -j otherwise, for i = 1,2,...,M.
</PRE>
<B>Tolerances</B>
<PRE>
TOL DOUBLE PRECISION
A tolerance below which matrix elements are considered
to be zero. If the user sets TOL to be less than (or
equal to) zero then the tolerance is taken as
EPS * MAX(ABS(E(I,J))), where EPS is the machine
precision (see LAPACK Library routine DLAMCH),
I = 1,2,...,M and J = 1,2,...,N.
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (MAX(M,N))
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
Given an M-by-N matrix pencil sE-A with E not necessarily regular,
the routine computes a unitary transformed pencil Q'(sE-A)Z such
that the matrix Q' * E * Z is in column echelon form (trapezoidal
form). Further details can be found in [1].
[An M-by-N matrix E with rank(E) = r is said to be in column
echelon form if the following conditions are satisfied:
(a) the first (N - r) columns contain only zero elements; and
(b) if E(i(k),k) is the last nonzero element in column k for
k = N-r+1,...,N, i.e. E(i(k),k) <> 0 and E(j,k) = 0 for
j > i(k), then 1 <= i(N-r+1) < i(N-r+2) < ... < i(N) <= M.]
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Beelen, Th. and Van Dooren, P.
An improved algorithm for the computation of Kronecker's
canonical form of a singular pencil.
Linear Algebra and Applications, 105, pp. 9-65, 1988.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
It is shown in [1] that the algorithm is numerically backward
stable. The operations count is proportional to (MAX(M,N))**3.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* MB04UD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER MMAX, NMAX
PARAMETER ( MMAX = 20, NMAX = 20 )
INTEGER LDA, LDE, LDQ, LDZ
PARAMETER ( LDA = MMAX, LDE = MMAX, LDQ = MMAX,
$ LDZ = NMAX )
INTEGER LDWORK
PARAMETER ( LDWORK = MAX( NMAX,MMAX ) )
* PARAMETER ( LDWORK = NMAX+MMAX )
* .. Local Scalars ..
DOUBLE PRECISION TOL
INTEGER I, INFO, J, M, N, RANKE
CHARACTER*1 JOBQ, JOBZ
* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), DWORK(LDWORK), E(LDE,NMAX),
$ Q(LDQ,MMAX), Z(LDZ,NMAX)
INTEGER ISTAIR(MMAX)
* .. External Subroutines ..
EXTERNAL MB04UD
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) M, N, TOL
IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99993 ) M
ELSE IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99992 ) N
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,M )
READ ( NIN, FMT = * ) ( ( E(I,J), J = 1,N ), I = 1,M )
JOBQ = 'N'
JOBZ = 'N'
* Reduce E to column echelon form and compute Q'*A*Z.
CALL MB04UD( JOBQ, JOBZ, M, N, A, LDA, E, LDE, Q, LDQ, Z, LDZ,
$ RANKE, ISTAIR, TOL, DWORK, INFO )
*
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
WRITE ( NOUT, FMT = 99991 )
DO 10 I = 1, M
WRITE ( NOUT, FMT = 99996 ) ( A(I,J), J = 1,N )
10 CONTINUE
WRITE ( NOUT, FMT = 99997 )
DO 100 I = 1, M
WRITE ( NOUT, FMT = 99996 ) ( E(I,J), J = 1,N )
100 CONTINUE
WRITE ( NOUT, FMT = 99995 ) RANKE
WRITE ( NOUT, FMT = 99994 ) ( ISTAIR(I), I = 1,M )
END IF
END IF
STOP
*
99999 FORMAT (' MB04UD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from MB04UD = ',I2)
99997 FORMAT (' The transformed matrix E is ')
99996 FORMAT (20(1X,F8.4))
99995 FORMAT (/' The computed rank of E = ',I2)
99994 FORMAT (/' ISTAIR is ',/20(1X,I5))
99993 FORMAT (/' M is out of range.',/' M = ',I5)
99992 FORMAT (/' N is out of range.',/' N = ',I5)
99991 FORMAT (' The transformed matrix A is ')
END
</PRE>
<B>Program Data</B>
<PRE>
MB04UD EXAMPLE PROGRAM DATA
4 4 0.0
2.0 0.0 2.0 -2.0
0.0 -2.0 0.0 2.0
2.0 0.0 -2.0 0.0
2.0 -2.0 0.0 2.0
1.0 0.0 1.0 -1.0
0.0 -1.0 0.0 1.0
1.0 0.0 -1.0 0.0
1.0 -1.0 0.0 1.0
</PRE>
<B>Program Results</B>
<PRE>
MB04UD EXAMPLE PROGRAM RESULTS
The transformed matrix A is
0.5164 1.0328 1.1547 -2.3094
0.0000 -2.5820 0.0000 -1.1547
0.0000 0.0000 -3.4641 0.0000
0.0000 0.0000 0.0000 -3.4641
The transformed matrix E is
0.2582 0.5164 0.5774 -1.1547
0.0000 -1.2910 0.0000 -0.5774
0.0000 0.0000 -1.7321 0.0000
0.0000 0.0000 0.0000 -1.7321
The computed rank of E = 4
ISTAIR is
1 2 3 4
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|