File: MB04UD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (310 lines) | stat: -rw-r--r-- 11,241 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
<HTML>
<HEAD><TITLE>MB04UD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB04UD">MB04UD</A></H2>
<H3>
Column echelon form by unitary transformations for a rectangular matrix (added functionality)
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute orthogonal transformations Q and Z such that the
  transformed pencil Q'(sE-A)Z has the E matrix in column echelon
  form, where E and A are M-by-N matrices.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB04UD( JOBQ, JOBZ, M, N, A, LDA, E, LDE, Q, LDQ,
     $                   Z, LDZ, RANKE, ISTAIR, TOL, DWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER         JOBQ, JOBZ
      INTEGER           INFO, LDA, LDE, LDQ, LDZ, M, N, RANKE
      DOUBLE PRECISION  TOL
C     .. Array Arguments ..
      INTEGER           ISTAIR(*)
      DOUBLE PRECISION  A(LDA,*), DWORK(*), E(LDE,*), Q(LDQ,*), Z(LDZ,*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  JOBQ    CHARACTER*1
          Indicates whether the user wishes to accumulate in a
          matrix Q the unitary row permutations, as follows:
          = 'N':  Do not form Q;
          = 'I':  Q is initialized to the unit matrix and the
                  unitary row permutation matrix Q is returned;
          = 'U':  The given matrix Q is updated by the unitary
                  row permutations used in the reduction.

  JOBZ    CHARACTER*1
          Indicates whether the user wishes to accumulate in a
          matrix Z the unitary column transformations, as follows:
          = 'N':  Do not form Z;
          = 'I':  Z is initialized to the unit matrix and the
                  unitary transformation matrix Z is returned;
          = 'U':  The given matrix Z is updated by the unitary
                  transformations used in the reduction.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  M       (input) INTEGER
          The number of rows in the matrices A, E and the order of
          the matrix Q.  M &gt;= 0.

  N       (input) INTEGER
          The number of columns in the matrices A, E and the order
          of the matrix Z.  N &gt;= 0.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading M-by-N part of this array must
          contain the A matrix of the pencil sE-A.
          On exit, the leading M-by-N part of this array contains
          the unitary transformed matrix Q' * A * Z.

  LDA     INTEGER
          The leading dimension of array A.  LDA &gt;= MAX(1,M).

  E       (input/output) DOUBLE PRECISION array, dimension (LDE,N)
          On entry, the leading M-by-N part of this array must
          contain the E matrix of the pencil sE-A, to be reduced to
          column echelon form.
          On exit, the leading M-by-N part of this array contains
          the unitary transformed matrix Q' * E * Z, which is in
          column echelon form.

  LDE     INTEGER
          The leading dimension of array E.  LDE &gt;= MAX(1,M).

  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,*)
          On entry, if JOBQ = 'U', then the leading M-by-M part of
          this array must contain a given matrix Q (e.g. from a
          previous call to another SLICOT routine), and on exit, the
          leading M-by-M part of this array contains the product of
          the input matrix Q and the row permutation matrix used to
          transform the rows of matrix E.
          On exit, if JOBQ = 'I', then the leading M-by-M part of
          this array contains the matrix of accumulated unitary
          row transformations performed.
          If JOBQ = 'N', the array Q is not referenced and can be
          supplied as a dummy array (i.e. set parameter LDQ = 1 and
          declare this array to be Q(1,1) in the calling program).

  LDQ     INTEGER
          The leading dimension of array Q. If JOBQ = 'U' or
          JOBQ = 'I', LDQ &gt;= MAX(1,M); if JOBQ = 'N', LDQ &gt;= 1.

  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,*)
          On entry, if JOBZ = 'U', then the leading N-by-N part of
          this array must contain a given matrix Z (e.g. from a
          previous call to another SLICOT routine), and on exit, the
          leading N-by-N part of this array contains the product of
          the input matrix Z and the column transformation matrix
          used to transform the columns of matrix E.
          On exit, if JOBZ = 'I', then the leading N-by-N part of
          this array contains the matrix of accumulated unitary
          column transformations performed.
          If JOBZ = 'N', the array Z is not referenced and can be
          supplied as a dummy array (i.e. set parameter LDZ = 1 and
          declare this array to be Z(1,1) in the calling program).

  LDZ     INTEGER
          The leading dimension of array Z. If JOBZ = 'U' or
          JOBZ = 'I', LDZ &gt;= MAX(1,N); if JOBZ = 'N', LDZ &gt;= 1.

  RANKE   (output) INTEGER
          The computed rank of the unitary transformed matrix E.

  ISTAIR  (output) INTEGER array, dimension (M)
          This array contains information on the column echelon form
          of the unitary transformed matrix E. Specifically,
          ISTAIR(i) = +j if the first non-zero element E(i,j)
          is a corner point and -j otherwise, for i = 1,2,...,M.

</PRE>
<B>Tolerances</B>
<PRE>
  TOL     DOUBLE PRECISION
          A tolerance below which matrix elements are considered
          to be zero. If the user sets TOL to be less than (or
          equal to) zero then the tolerance is taken as
          EPS * MAX(ABS(E(I,J))), where EPS is the machine
          precision (see LAPACK Library routine DLAMCH),
          I = 1,2,...,M and J = 1,2,...,N.

</PRE>
<B>Workspace</B>
<PRE>
  DWORK   DOUBLE PRECISION array, dimension (MAX(M,N))

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  Given an M-by-N matrix pencil sE-A with E not necessarily regular,
  the routine computes a unitary transformed pencil Q'(sE-A)Z such
  that the matrix Q' * E * Z is in column echelon form (trapezoidal
  form).  Further details can be found in [1].

  [An M-by-N matrix E with rank(E) = r is said to be in column
  echelon form if the following conditions are satisfied:
  (a) the first (N - r) columns contain only zero elements; and
  (b) if E(i(k),k) is the last nonzero element in column k for
      k = N-r+1,...,N, i.e. E(i(k),k) &lt;&gt; 0 and E(j,k) = 0 for
      j &gt; i(k), then 1 &lt;= i(N-r+1) &lt; i(N-r+2) &lt; ... &lt; i(N) &lt;= M.]

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Beelen, Th. and Van Dooren, P.
      An improved algorithm for the computation of Kronecker's
      canonical form of a singular pencil.
      Linear Algebra and Applications, 105, pp. 9-65, 1988.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  It is shown in [1] that the algorithm is numerically backward
  stable. The operations count is proportional to (MAX(M,N))**3.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
*     MB04UD EXAMPLE PROGRAM TEXT
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          MMAX, NMAX
      PARAMETER        ( MMAX = 20, NMAX = 20 )
      INTEGER          LDA, LDE, LDQ, LDZ
      PARAMETER        ( LDA = MMAX, LDE = MMAX, LDQ = MMAX,
     $                   LDZ = NMAX )
      INTEGER          LDWORK
      PARAMETER        ( LDWORK = MAX( NMAX,MMAX ) )
*     PARAMETER        ( LDWORK = NMAX+MMAX )
*     .. Local Scalars ..
      DOUBLE PRECISION TOL
      INTEGER          I, INFO, J, M, N, RANKE
      CHARACTER*1      JOBQ, JOBZ
*     .. Local Arrays ..
      DOUBLE PRECISION A(LDA,NMAX), DWORK(LDWORK), E(LDE,NMAX),
     $                 Q(LDQ,MMAX), Z(LDZ,NMAX)
      INTEGER          ISTAIR(MMAX)
*     .. External Subroutines ..
      EXTERNAL         MB04UD
*     .. Intrinsic Functions ..
      INTRINSIC        MAX
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) M, N, TOL
      IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
         WRITE ( NOUT, FMT = 99993 ) M
      ELSE IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99992 ) N
      ELSE
         READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,M )
         READ ( NIN, FMT = * ) ( ( E(I,J), J = 1,N ), I = 1,M )
         JOBQ = 'N'
         JOBZ = 'N'
*        Reduce E to column echelon form and compute Q'*A*Z.
         CALL MB04UD( JOBQ, JOBZ, M, N, A, LDA, E, LDE, Q, LDQ, Z, LDZ,
     $                RANKE, ISTAIR, TOL, DWORK, INFO )
*
         IF ( INFO.NE.0 ) THEN
            WRITE ( NOUT, FMT = 99998 ) INFO
         ELSE
            WRITE ( NOUT, FMT = 99991 )
            DO 10 I = 1, M
               WRITE ( NOUT, FMT = 99996 ) ( A(I,J), J = 1,N )
   10       CONTINUE
            WRITE ( NOUT, FMT = 99997 )
            DO 100 I = 1, M
               WRITE ( NOUT, FMT = 99996 ) ( E(I,J), J = 1,N )
  100       CONTINUE
            WRITE ( NOUT, FMT = 99995 ) RANKE
            WRITE ( NOUT, FMT = 99994 ) ( ISTAIR(I), I = 1,M )
         END IF
      END IF
      STOP
*
99999 FORMAT (' MB04UD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from MB04UD = ',I2)
99997 FORMAT (' The transformed matrix E is ')
99996 FORMAT (20(1X,F8.4))
99995 FORMAT (/' The computed rank of E = ',I2)
99994 FORMAT (/' ISTAIR is ',/20(1X,I5))
99993 FORMAT (/' M is out of range.',/' M = ',I5)
99992 FORMAT (/' N is out of range.',/' N = ',I5)
99991 FORMAT (' The transformed matrix A is ')
      END
</PRE>
<B>Program Data</B>
<PRE>
 MB04UD EXAMPLE PROGRAM DATA
   4     4     0.0
   2.0  0.0  2.0 -2.0
   0.0 -2.0  0.0  2.0
   2.0  0.0 -2.0  0.0
   2.0 -2.0  0.0  2.0
   1.0  0.0  1.0 -1.0
   0.0 -1.0  0.0  1.0
   1.0  0.0 -1.0  0.0
   1.0 -1.0  0.0  1.0
</PRE>
<B>Program Results</B>
<PRE>
 MB04UD EXAMPLE PROGRAM RESULTS

 The transformed matrix A is 
   0.5164   1.0328   1.1547  -2.3094
   0.0000  -2.5820   0.0000  -1.1547
   0.0000   0.0000  -3.4641   0.0000
   0.0000   0.0000   0.0000  -3.4641
 The transformed matrix E is 
   0.2582   0.5164   0.5774  -1.1547
   0.0000  -1.2910   0.0000  -0.5774
   0.0000   0.0000  -1.7321   0.0000
   0.0000   0.0000   0.0000  -1.7321

 The computed rank of E =  4

 ISTAIR is 
     1     2     3     4
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>