1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
|
<HTML>
<HEAD><TITLE>MB04VD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB04VD">MB04VD</A></H2>
<H3>
Upper block triangular form for a rectangular pencil sE-A, with E in column echelon form (added functionality)
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute orthogonal transformations Q and Z such that the
transformed pencil Q'(sE-A)Z is in upper block triangular form,
where E is an M-by-N matrix in column echelon form (see SLICOT
Library routine MB04UD) and A is an M-by-N matrix.
If MODE = 'B', then the matrices A and E are transformed into the
following generalized Schur form by unitary transformations Q1
and Z1 :
| sE(eps,inf)-A(eps,inf) | X |
Q1'(sE-A)Z1 = |------------------------|------------|. (1)
| O | sE(r)-A(r) |
The pencil sE(eps,inf)-A(eps,inf) is in staircase form, and it
contains all Kronecker column indices and infinite elementary
divisors of the pencil sE-A. The pencil sE(r)-A(r) contains all
Kronecker row indices and elementary divisors of sE-A.
Note: X is a pencil.
If MODE = 'T', then the submatrices having full row and column
rank in the pencil sE(eps,inf)-A(eps,inf) in (1) are
triangularized by applying unitary transformations Q2 and Z2 to
Q1'*(sE-A)*Z1.
If MODE = 'S', then the pencil sE(eps,inf)-A(eps,inf) in (1) is
separated into sE(eps)-A(eps) and sE(inf)-A(inf) by applying
unitary transformations Q3 and Z3 to Q2'*Q1'*(sE-A)*Z1*Z2.
This gives
| sE(eps)-A(eps) | X | X |
|----------------|----------------|------------|
| O | sE(inf)-A(inf) | X |
Q'(sE-A)Z =|=================================|============| (2)
| | |
| O | sE(r)-A(r) |
where Q = Q1*Q2*Q3 and Z = Z1*Z2*Z3.
Note: the pencil sE(r)-A(r) is not reduced further.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB04VD( MODE, JOBQ, JOBZ, M, N, RANKE, A, LDA, E, LDE,
$ Q, LDQ, Z, LDZ, ISTAIR, NBLCKS, NBLCKI, IMUK,
$ INUK, IMUK0, MNEI, TOL, IWORK, INFO )
C .. Scalar Arguments ..
CHARACTER JOBQ, JOBZ, MODE
INTEGER INFO, LDA, LDE, LDQ, LDZ, M, N, NBLCKI, NBLCKS,
$ RANKE
DOUBLE PRECISION TOL
C .. Array Arguments ..
INTEGER IMUK(*), IMUK0(*), INUK(*), ISTAIR(*), IWORK(*),
$ MNEI(*)
DOUBLE PRECISION A(LDA,*), E(LDE,*), Q(LDQ,*), Z(LDZ,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
MODE CHARACTER*1
Specifies the desired structure of the transformed
pencil Q'(sE-A)Z to be computed as follows:
= 'B': Basic reduction given by (1);
= 'T': Further reduction of (1) to triangular form;
= 'S': Further separation of sE(eps,inf)-A(eps,inf)
in (1) into the two pencils in (2).
JOBQ CHARACTER*1
Indicates whether the user wishes to accumulate in a
matrix Q the orthogonal row transformations, as follows:
= 'N': Do not form Q;
= 'I': Q is initialized to the unit matrix and the
orthogonal transformation matrix Q is returned;
= 'U': The given matrix Q is updated by the orthogonal
row transformations used in the reduction.
JOBZ CHARACTER*1
Indicates whether the user wishes to accumulate in a
matrix Z the orthogonal column transformations, as
follows:
= 'N': Do not form Z;
= 'I': Z is initialized to the unit matrix and the
orthogonal transformation matrix Z is returned;
= 'U': The given matrix Z is updated by the orthogonal
transformations used in the reduction.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
M (input) INTEGER
The number of rows in the matrices A, E and the order of
the matrix Q. M >= 0.
N (input) INTEGER
The number of columns in the matrices A, E and the order
of the matrix Z. N >= 0.
RANKE (input) INTEGER
The rank of the matrix E in column echelon form.
RANKE >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading M-by-N part of this array must
contain the matrix to be row compressed.
On exit, the leading M-by-N part of this array contains
the matrix that has been row compressed while keeping
matrix E in column echelon form.
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,M).
E (input/output) DOUBLE PRECISION array, dimension (LDE,N)
On entry, the leading M-by-N part of this array must
contain the matrix in column echelon form to be
transformed equivalent to matrix A.
On exit, the leading M-by-N part of this array contains
the matrix that has been transformed equivalent to matrix
A.
LDE INTEGER
The leading dimension of array E. LDE >= MAX(1,M).
Q (input/output) DOUBLE PRECISION array, dimension (LDQ,*)
On entry, if JOBQ = 'U', then the leading M-by-M part of
this array must contain a given matrix Q (e.g. from a
previous call to another SLICOT routine), and on exit, the
leading M-by-M part of this array contains the product of
the input matrix Q and the row transformation matrix used
to transform the rows of matrices A and E.
On exit, if JOBQ = 'I', then the leading M-by-M part of
this array contains the matrix of accumulated orthogonal
row transformations performed.
If JOBQ = 'N', the array Q is not referenced and can be
supplied as a dummy array (i.e. set parameter LDQ = 1 and
declare this array to be Q(1,1) in the calling program).
LDQ INTEGER
The leading dimension of array Q. If JOBQ = 'U' or
JOBQ = 'I', LDQ >= MAX(1,M); if JOBQ = 'N', LDQ >= 1.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ,*)
On entry, if JOBZ = 'U', then the leading N-by-N part of
this array must contain a given matrix Z (e.g. from a
previous call to another SLICOT routine), and on exit, the
leading N-by-N part of this array contains the product of
the input matrix Z and the column transformation matrix
used to transform the columns of matrices A and E.
On exit, if JOBZ = 'I', then the leading N-by-N part of
this array contains the matrix of accumulated orthogonal
column transformations performed.
If JOBZ = 'N', the array Z is not referenced and can be
supplied as a dummy array (i.e. set parameter LDZ = 1 and
declare this array to be Z(1,1) in the calling program).
LDZ INTEGER
The leading dimension of array Z. If JOBZ = 'U' or
JOBZ = 'I', LDZ >= MAX(1,N); if JOBZ = 'N', LDZ >= 1.
ISTAIR (input/output) INTEGER array, dimension (M)
On entry, this array must contain information on the
column echelon form of the unitary transformed matrix E.
Specifically, ISTAIR(i) must be set to +j if the first
non-zero element E(i,j) is a corner point and -j
otherwise, for i = 1,2,...,M.
On exit, this array contains no useful information.
NBLCKS (output) INTEGER
The number of submatrices having full row rank greater
than or equal to 0 detected in matrix A in the pencil
sE(x)-A(x),
where x = eps,inf if MODE = 'B' or 'T',
or x = eps if MODE = 'S'.
NBLCKI (output) INTEGER
If MODE = 'S', the number of diagonal submatrices in the
pencil sE(inf)-A(inf). If MODE = 'B' or 'T' then
NBLCKI = 0.
IMUK (output) INTEGER array, dimension (MAX(N,M+1))
The leading NBLCKS elements of this array contain the
column dimensions mu(1),...,mu(NBLCKS) of the submatrices
having full column rank in the pencil sE(x)-A(x),
where x = eps,inf if MODE = 'B' or 'T',
or x = eps if MODE = 'S'.
INUK (output) INTEGER array, dimension (MAX(N,M+1))
The leading NBLCKS elements of this array contain the
row dimensions nu(1),...,nu(NBLCKS) of the submatrices
having full row rank in the pencil sE(x)-A(x),
where x = eps,inf if MODE = 'B' or 'T',
or x = eps if MODE = 'S'.
IMUK0 (output) INTEGER array, dimension (limuk0),
where limuk0 = N if MODE = 'S' and 1, otherwise.
If MODE = 'S', then the leading NBLCKI elements of this
array contain the dimensions mu0(1),...,mu0(NBLCKI)
of the square diagonal submatrices in the pencil
sE(inf)-A(inf).
Otherwise, IMUK0 is not referenced and can be supplied
as a dummy array.
MNEI (output) INTEGER array, dimension (3)
If MODE = 'B' or 'T' then
MNEI(1) contains the row dimension of
sE(eps,inf)-A(eps,inf);
MNEI(2) contains the column dimension of
sE(eps,inf)-A(eps,inf);
MNEI(3) = 0.
If MODE = 'S', then
MNEI(1) contains the row dimension of sE(eps)-A(eps);
MNEI(2) contains the column dimension of sE(eps)-A(eps);
MNEI(3) contains the order of the regular pencil
sE(inf)-A(inf).
</PRE>
<B>Tolerances</B>
<PRE>
TOL DOUBLE PRECISION
A tolerance below which matrix elements are considered
to be zero. If the user sets TOL to be less than (or
equal to) zero then the tolerance is taken as
EPS * MAX( ABS(A(I,J)), ABS(E(I,J)) ), where EPS is the
machine precision (see LAPACK Library routine DLAMCH),
I = 1,2,...,M and J = 1,2,...,N.
</PRE>
<B>Workspace</B>
<PRE>
IWORK INTEGER array, dimension (N)
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value.
> 0: if incorrect rank decisions were revealed during the
triangularization phase. This failure is not likely
to occur. The possible values are:
= 1: if incorrect dimensions of a full column rank
submatrix;
= 2: if incorrect dimensions of a full row rank
submatrix.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
Let sE - A be an arbitrary pencil. Prior to calling the routine,
this pencil must be transformed into a pencil with E in column
echelon form. This may be accomplished by calling the SLICOT
Library routine MB04UD. Depending on the value of MODE,
submatrices of A and E are then reduced to one of the forms
described above. Further details can be found in [1].
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Beelen, Th. and Van Dooren, P.
An improved algorithm for the computation of Kronecker's
canonical form of a singular pencil.
Linear Algebra and Applications, 105, pp. 9-65, 1988.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
It is shown in [1] that the algorithm is numerically backward
stable. The operations count is proportional to (MAX(M,N))**3.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
The difference mu(k)-nu(k), for k = 1,2,...,NBLCKS, is the number
of elementary Kronecker blocks of size k x (k+1).
If MODE = 'B' or 'T' on entry, then the difference nu(k)-mu(k+1),
for k = 1,2,...,NBLCKS, is the number of infinite elementary
divisors of degree k (with mu(NBLCKS+1) = 0).
If MODE = 'S' on entry, then the difference mu0(k)-mu0(k+1),
for k = 1,2,...,NBLCKI, is the number of infinite elementary
divisors of degree k (with mu0(NBLCKI+1) = 0).
In the pencil sE(r)-A(r), the pencils sE(f)-A(f) and
sE(eta)-A(eta) can be separated by pertransposing the pencil
sE(r)-A(r) and calling the routine with MODE set to 'B'. The
result has got to be pertransposed again. (For more details see
[1]).
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* MB04VD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER MMAX, NMAX
PARAMETER ( MMAX = 20, NMAX = 20 )
INTEGER LDA, LDE, LDQ, LDZ
PARAMETER ( LDA = MMAX, LDE = MMAX, LDQ = MMAX,
$ LDZ = NMAX )
INTEGER LINUK
PARAMETER ( LINUK = MAX( NMAX,MMAX+1 ) )
* PARAMETER ( LINUK = NMAX+MMAX+1 )
INTEGER LIWORK
PARAMETER ( LIWORK = NMAX )
INTEGER LDWORK
PARAMETER ( LDWORK = MAX( NMAX,MMAX ) )
* PARAMETER ( LDWORK = NMAX+MMAX )
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
* .. Local Scalars ..
DOUBLE PRECISION TOL
INTEGER I, INFO, J, M, N, NBLCKI, NBLCKS, RANKE
CHARACTER*1 JOBQ, JOBZ, MODE
* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), DWORK(LDWORK), E(LDE,NMAX),
$ Q(LDQ,MMAX), Z(LDZ,NMAX)
INTEGER IMUK(LINUK), IMUK0(NMAX), INUK(LINUK),
$ ISTAIR(MMAX), IWORK(LIWORK), MNEI(3)
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* .. External Subroutines ..
EXTERNAL MB04UD, MB04VD
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) M, N, TOL, MODE
IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99984 ) M
ELSE IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99983 ) N
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,M )
READ ( NIN, FMT = * ) ( ( E(I,J), J = 1,N ), I = 1,M )
JOBQ = 'I'
JOBZ = 'I'
* Reduce E to column echelon form and compute Q'*A*Z.
CALL MB04UD( JOBQ, JOBZ, M, N, A, LDA, E, LDE, Q, LDQ, Z, LDZ,
$ RANKE, ISTAIR, TOL, DWORK, INFO )
JOBQ = 'U'
JOBZ = 'U'
*
IF ( INFO.EQ.0 ) THEN
* Compute a unitary transformed pencil Q'*(s*E-A)*Z.
CALL MB04VD( MODE, JOBQ, JOBZ, M, N, RANKE, A, LDA, E, LDE,
$ Q, LDQ, Z, LDZ, ISTAIR, NBLCKS, NBLCKI, IMUK,
$ INUK, IMUK0, MNEI, TOL, IWORK, INFO )
*
IF ( INFO.EQ.0 ) THEN
WRITE ( NOUT, FMT = 99996 )
WRITE ( NOUT, FMT = 99995 )
DO 140 I = 1, M
WRITE ( NOUT, FMT = 99994 ) ( Q(I,J), J = 1,M )
140 CONTINUE
WRITE ( NOUT, FMT = 99993 )
DO 160 I = 1, M
WRITE ( NOUT, FMT = 99994 ) ( E(I,J), J = 1,N )
160 CONTINUE
WRITE ( NOUT, FMT = 99992 )
DO 180 I = 1, M
WRITE ( NOUT, FMT = 99994 ) ( A(I,J), J = 1,N )
180 CONTINUE
WRITE ( NOUT, FMT = 99991 )
DO 200 I = 1, N
WRITE ( NOUT, FMT = 99994 ) ( Z(I,J), J = 1,N )
200 CONTINUE
WRITE ( NOUT, FMT = 99990 ) NBLCKS
IF ( .NOT. LSAME( MODE, 'S' ) ) THEN
WRITE ( NOUT, FMT = 99989 ) ( IMUK(I), I = 1,NBLCKS )
WRITE ( NOUT, FMT = 99988 ) ( INUK(I), I = 1,NBLCKS )
ELSE
WRITE ( NOUT, FMT = 99987 ) ( IMUK(I), I = 1,NBLCKS )
WRITE ( NOUT, FMT = 99986 ) ( INUK(I), I = 1,NBLCKS )
WRITE ( NOUT, FMT = 99982 ) ( IMUK0(I), I = 1,NBLCKI )
WRITE ( NOUT, FMT = 99985 ) ( MNEI(I), I = 1,3 )
END IF
ELSE
WRITE ( NOUT, FMT = 99998 ) INFO
END IF
ELSE
WRITE ( NOUT, FMT = 99997 ) INFO
END IF
END IF
STOP
*
99999 FORMAT (' MB04VD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from MB04VD = ',I2)
99997 FORMAT (' INFO on exit from MB04UD = ',I2)
99996 FORMAT (' The unitary transformed pencil is Q''*(s*E-A)*Z, where',
$ /)
99995 FORMAT (' Matrix Q',/)
99994 FORMAT (20(1X,F8.4))
99993 FORMAT (/' Matrix E',/)
99992 FORMAT (/' Matrix A',/)
99991 FORMAT (/' Matrix Z',/)
99990 FORMAT (/' The number of submatrices having full row rank detect',
$ 'ed in matrix A = ',I3)
99989 FORMAT (/' The column dimensions of the submatrices having full ',
$ 'column rank in the pencil',/' sE(eps,inf) - A(eps,inf) a',
$ 're',/20(1X,I5))
99988 FORMAT (/' The row dimensions of the submatrices having full row',
$ ' rank in the pencil',/' sE(eps,inf) - A(eps,inf) are',
$ /20(1X,I5))
99987 FORMAT (/' The column dimensions of the submatrices having full ',
$ 'column rank in the pencil',/' sE(eps) - A(eps) are',
$ /20(1X,I5))
99986 FORMAT (/' The row dimensions of the submatrices having full row',
$ ' rank in the pencil',/' sE(eps) - A(eps) are',/20(1X,I5))
99985 FORMAT (/' MNEI is ',/20(1X,I5))
99984 FORMAT (/' M is out of range.',/' M = ',I5)
99983 FORMAT (/' N is out of range.',/' N = ',I5)
99982 FORMAT (/' The orders of the diagonal submatrices in the pencil ',
$ 'sE(inf) - A(inf) are',/20(1X,I5))
END
</PRE>
<B>Program Data</B>
<PRE>
MB04VD EXAMPLE PROGRAM DATA
2 4 0.0 S
1.0 0.0 -1.0 0.0
1.0 1.0 0.0 -1.0
0.0 -1.0 0.0 0.0
0.0 -1.0 0.0 0.0
</PRE>
<B>Program Results</B>
<PRE>
MB04VD EXAMPLE PROGRAM RESULTS
The unitary transformed pencil is Q'*(s*E-A)*Z, where
Matrix Q
0.7071 -0.7071
0.7071 0.7071
Matrix E
0.0000 0.0000 -1.1547 0.8165
0.0000 0.0000 0.0000 0.0000
Matrix A
0.0000 1.7321 0.5774 -0.4082
0.0000 0.0000 0.0000 -1.2247
Matrix Z
0.5774 0.8165 0.0000 0.0000
0.0000 0.0000 0.8165 -0.5774
0.5774 -0.4082 -0.4082 -0.5774
0.5774 -0.4082 0.4082 0.5774
The number of submatrices having full row rank detected in matrix A = 2
The column dimensions of the submatrices having full column rank in the pencil
sE(eps) - A(eps) are
2 1
The row dimensions of the submatrices having full row rank in the pencil
sE(eps) - A(eps) are
1 0
The orders of the diagonal submatrices in the pencil sE(inf) - A(inf) are
1
MNEI is
1 3 1
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|