1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
<HTML>
<HEAD><TITLE>MB04WD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB04WD">MB04WD</A></H2>
<H3>
Generating an orthogonal basis spanning an isotropic subspace
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To generate a matrix Q with orthogonal columns (spanning an
isotropic subspace), which is defined as the first n columns
of a product of symplectic reflectors and Givens rotations,
Q = diag( H(1),H(1) ) G(1) diag( F(1),F(1) )
diag( H(2),H(2) ) G(2) diag( F(2),F(2) )
....
diag( H(k),H(k) ) G(k) diag( F(k),F(k) ).
The matrix Q is returned in terms of its first 2*M rows
[ op( Q1 ) op( Q2 ) ]
Q = [ ].
[ -op( Q2 ) op( Q1 ) ]
Blocked version of the SLICOT Library routine MB04WU.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB04WD( TRANQ1, TRANQ2, M, N, K, Q1, LDQ1, Q2, LDQ2,
$ CS, TAU, DWORK, LDWORK, INFO )
C .. Scalar Arguments ..
CHARACTER TRANQ1, TRANQ2
INTEGER INFO, K, LDQ1, LDQ2, LDWORK, M, N
C .. Array Arguments ..
DOUBLE PRECISION CS(*), DWORK(*), Q1(LDQ1,*), Q2(LDQ2,*), TAU(*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
TRANQ1 CHARACTER*1
Specifies the form of op( Q1 ) as follows:
= 'N': op( Q1 ) = Q1;
= 'T': op( Q1 ) = Q1';
= 'C': op( Q1 ) = Q1'.
TRANQ2 CHARACTER*1
Specifies the form of op( Q2 ) as follows:
= 'N': op( Q2 ) = Q2;
= 'T': op( Q2 ) = Q2';
= 'C': op( Q2 ) = Q2'.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
M (input) INTEGER
The number of rows of the matrices Q1 and Q2. M >= 0.
N (input) INTEGER
The number of columns of the matrices Q1 and Q2.
M >= N >= 0.
K (input) INTEGER
The number of symplectic Givens rotations whose product
partly defines the matrix Q. N >= K >= 0.
Q1 (input/output) DOUBLE PRECISION array, dimension
(LDQ1,N) if TRANQ1 = 'N',
(LDQ1,M) if TRANQ1 = 'T' or TRANQ1 = 'C'
On entry with TRANQ1 = 'N', the leading M-by-K part of
this array must contain in its i-th column the vector
which defines the elementary reflector F(i).
On entry with TRANQ1 = 'T' or TRANQ1 = 'C', the leading
K-by-M part of this array must contain in its i-th row
the vector which defines the elementary reflector F(i).
On exit with TRANQ1 = 'N', the leading M-by-N part of this
array contains the matrix Q1.
On exit with TRANQ1 = 'T' or TRANQ1 = 'C', the leading
N-by-M part of this array contains the matrix Q1'.
LDQ1 INTEGER
The leading dimension of the array Q1.
LDQ1 >= MAX(1,M), if TRANQ1 = 'N';
LDQ1 >= MAX(1,N), if TRANQ1 = 'T' or TRANQ1 = 'C'.
Q2 (input/output) DOUBLE PRECISION array, dimension
(LDQ2,N) if TRANQ2 = 'N',
(LDQ2,M) if TRANQ2 = 'T' or TRANQ2 = 'C'
On entry with TRANQ2 = 'N', the leading M-by-K part of
this array must contain in its i-th column the vector
which defines the elementary reflector H(i) and, on the
diagonal, the scalar factor of H(i).
On entry with TRANQ2 = 'T' or TRANQ2 = 'C', the leading
K-by-M part of this array must contain in its i-th row the
vector which defines the elementary reflector H(i) and, on
the diagonal, the scalar factor of H(i).
On exit with TRANQ2 = 'N', the leading M-by-N part of this
array contains the matrix Q2.
On exit with TRANQ2 = 'T' or TRANQ2 = 'C', the leading
N-by-M part of this array contains the matrix Q2'.
LDQ2 INTEGER
The leading dimension of the array Q2.
LDQ2 >= MAX(1,M), if TRANQ2 = 'N';
LDQ2 >= MAX(1,N), if TRANQ2 = 'T' or TRANQ2 = 'C'.
CS (input) DOUBLE PRECISION array, dimension (2*K)
On entry, the first 2*K elements of this array must
contain the cosines and sines of the symplectic Givens
rotations G(i).
TAU (input) DOUBLE PRECISION array, dimension (K)
On entry, the first K elements of this array must
contain the scalar factors of the elementary reflectors
F(i).
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) returns the optimal
value of LDWORK, MAX(M+N,8*N*NB + 15*NB*NB), where NB is
the optimal block size determined by the function UE01MD.
On exit, if INFO = -13, DWORK(1) returns the minimum
value of LDWORK.
LDWORK INTEGER
The length of the array DWORK. LDWORK >= MAX(1,M+N).
If LDWORK = -1, then a workspace query is assumed;
the routine only calculates the optimal size of the
DWORK array, returns this value as the first entry of
the DWORK array, and no error message related to LDWORK
is issued by XERBLA.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Kressner, D.
Block algorithms for orthogonal symplectic factorizations.
BIT, 43 (4), pp. 775-790, 2003.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
None
</PRE>
<B>Program Data</B>
<PRE>
None
</PRE>
<B>Program Results</B>
<PRE>
None
</PRE>
<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>
|