File: MB04WP.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (163 lines) | stat: -rw-r--r-- 5,114 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
<HTML>
<HEAD><TITLE>MB04WP - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB04WP">MB04WP</A></H2>
<H3>
Generating an orthogonal symplectic matrix which performed the reduction in MB04PU
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To generate an orthogonal symplectic matrix U, which is defined as
  a product of symplectic reflectors and Givens rotations

  U = diag( H(1),H(1) )      G(1)  diag( F(1),F(1) )
      diag( H(2),H(2) )      G(2)  diag( F(2),F(2) )
                             ....
      diag( H(n-1),H(n-1) ) G(n-1) diag( F(n-1),F(n-1) ).

  as returned by MB04PU. The matrix U is returned in terms of its
  first N rows

                   [  U1   U2 ]
               U = [          ].
                   [ -U2   U1 ]

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB04WP( N, ILO, U1, LDU1, U2, LDU2, CS, TAU, DWORK,
     $                   LDWORK, INFO )
C     .. Scalar Arguments ..
      INTEGER           ILO, INFO, LDU1, LDU2, LDWORK, N
C     .. Array Arguments ..
      DOUBLE PRECISION  CS(*), DWORK(*), U1(LDU1,*), U2(LDU2,*), TAU(*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the matrices U1 and U2.  N &gt;= 0.

  ILO     (input) INTEGER
          ILO must have the same value as in the previous call of
          MB04PU. U is equal to the unit matrix except in the
          submatrix
          U([ilo+1:n n+ilo+1:2*n], [ilo+1:n n+ilo+1:2*n]).
          1 &lt;= ILO &lt;= N, if N &gt; 0; ILO = 1, if N = 0.

  U1      (input/output) DOUBLE PRECISION array, dimension (LDU1,N)
          On entry, the leading N-by-N part of this array must
          contain in its i-th column the vector which defines the
          elementary reflector F(i).
          On exit, the leading N-by-N part of this array contains
          the matrix U1.

  LDU1    INTEGER
          The leading dimension of the array U1.  LDU1 &gt;= MAX(1,N).

  U2      (input/output) DOUBLE PRECISION array, dimension (LDU2,N)
          On entry, the leading N-by-N part of this array must
          contain in its i-th column the vector which defines the
          elementary reflector H(i) and, on the subdiagonal, the
          scalar factor of H(i).
          On exit, the leading N-by-N part of this array contains
          the matrix U2.

  LDU2    INTEGER
          The leading dimension of the array U2.  LDU2 &gt;= MAX(1,N).

  CS      (input) DOUBLE PRECISION array, dimension (2N-2)
          On entry, the first 2N-2 elements of this array must
          contain the cosines and sines of the symplectic Givens
          rotations G(i).

  TAU     (input) DOUBLE PRECISION array, dimension (N-1)
          On entry, the first N-1 elements of this array must
          contain the scalar factors of the elementary reflectors
          F(i).

</PRE>
<B>Workspace</B>
<PRE>
  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0,  DWORK(1)  returns the optimal
          value of LDWORK.
          On exit, if  INFO = -10,  DWORK(1)  returns the minimum
          value of LDWORK.

  LDWORK  INTEGER
          The length of the array DWORK. LDWORK &gt;= MAX(1,2*(N-ILO)).
          For optimum performance LDWORK should be larger. (See
          SLICOT Library routine MB04WD).

          If LDWORK = -1, then a workspace query is assumed;
          the routine only calculates the optimal size of the
          DWORK array, returns this value as the first entry of
          the DWORK array, and no error message related to LDWORK
          is issued by XERBLA.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The algorithm requires O(N**3) floating point operations and is
  strongly backward stable.

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] C. F. VAN LOAN:
      A symplectic method for approximating all the eigenvalues of
      a Hamiltonian matrix.
      Linear Algebra and its Applications, 61, pp. 233-251, 1984.

  [2] D. KRESSNER:
      Block algorithms for orthogonal symplectic factorizations.
      BIT, 43 (4), pp. 775-790, 2003.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>