File: MB04WR.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (207 lines) | stat: -rw-r--r-- 7,581 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
<HTML>
<HEAD><TITLE>MB04WR - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="MB04WR">MB04WR</A></H2>
<H3>
Generating orthogonal symplectic matrices defined as products of symplectic reflectors and Givens rotations
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To generate orthogonal symplectic matrices U or V, defined as
  products of symplectic reflectors and Givens rotations

  U = diag( HU(1),HU(1) )  GU(1)  diag( FU(1),FU(1) )
      diag( HU(2),HU(2) )  GU(2)  diag( FU(2),FU(2) )
                           ....
      diag( HU(n),HU(n) )  GU(n)  diag( FU(n),FU(n) ),

  V = diag( HV(1),HV(1) )       GV(1)   diag( FV(1),FV(1) )
      diag( HV(2),HV(2) )       GV(2)   diag( FV(2),FV(2) )
                                ....
      diag( HV(n-1),HV(n-1) )  GV(n-1)  diag( FV(n-1),FV(n-1) ),

  as returned by the SLICOT Library routines MB04TS or MB04TB. The
  matrices U and V are returned in terms of their first N/2 rows:

              [  U1   U2 ]           [  V1   V2 ]
          U = [          ],      V = [          ].
              [ -U2   U1 ]           [ -V2   V1 ]

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE MB04WR( JOB, TRANS, N, ILO, Q1, LDQ1, Q2, LDQ2, CS,
     $                   TAU, DWORK, LDWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER         JOB, TRANS
      INTEGER           ILO, INFO, LDQ1, LDQ2, LDWORK, N
C     .. Array Arguments ..
      DOUBLE PRECISION  CS(*), DWORK(*), Q1(LDQ1,*), Q2(LDQ2,*), TAU(*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  JOB     CHARACTER*1
          Specifies whether the matrix U or the matrix V is
          required:
          = 'U':  generate U;
          = 'V':  generate V.

  TRANS   CHARACTER*1
          If  JOB = 'U'  then TRANS must have the same value as
          the argument TRANA in the previous call of MB04TS or
          MB04TB.
          If  JOB = 'V'  then TRANS must have the same value as
          the argument TRANB in the previous call of MB04TS or
          MB04TB.

  N       (input) INTEGER
          The order of the matrices Q1 and Q2. N &gt;= 0.

  ILO     (input) INTEGER
          ILO must have the same value as in the previous call of
          MB04TS or MB04TB. U and V are equal to the unit matrix
          except in the submatrices
          U([ilo:n n+ilo:2*n], [ilo:n n+ilo:2*n]) and
          V([ilo+1:n n+ilo+1:2*n], [ilo+1:n n+ilo+1:2*n]),
          respectively.
          1 &lt;= ILO &lt;= N, if N &gt; 0; ILO = 1, if N = 0.

  Q1      (input/output) DOUBLE PRECISION array, dimension (LDQ1,N)
          On entry, if  JOB = 'U'  and  TRANS = 'N'  then the
          leading N-by-N part of this array must contain in its i-th
          column the vector which defines the elementary reflector
          FU(i).
          If  JOB = 'U'  and  TRANS = 'T'  or  TRANS = 'C' then the
          leading N-by-N part of this array must contain in its i-th
          row the vector which defines the elementary reflector
          FU(i).
          If  JOB = 'V'  and  TRANS = 'N'  then the leading N-by-N
          part of this array must contain in its i-th row the vector
          which defines the elementary reflector FV(i).
          If  JOB = 'V'  and  TRANS = 'T'  or  TRANS = 'C' then the
          leading N-by-N part of this array must contain in its i-th
          column the vector which defines the elementary reflector
          FV(i).
          On exit, if  JOB = 'U'  and  TRANS = 'N'  then the leading
          N-by-N part of this array contains the matrix U1.
          If  JOB = 'U'  and  TRANS = 'T'  or  TRANS = 'C' then the
          leading N-by-N part of this array contains the matrix
          U1**T.
          If  JOB = 'V'  and  TRANS = 'N'  then the leading N-by-N
          part of this array contains the matrix V1**T.
          If  JOB = 'V'  and  TRANS = 'T'  or  TRANS = 'C' then the
          leading N-by-N part of this array contains the matrix V1.

  LDQ1    INTEGER
          The leading dimension of the array Q1.  LDQ1 &gt;= MAX(1,N).

  Q2      (input/output) DOUBLE PRECISION array, dimension (LDQ2,N)
          On entry, if  JOB = 'U'  then the leading N-by-N part of
          this array must contain in its i-th column the vector
          which defines the elementary reflector HU(i).
          If  JOB = 'V'  then the leading N-by-N part of this array
          must contain in its i-th row the vector which defines the
          elementary reflector HV(i).
          On exit, if  JOB = 'U'  then the leading N-by-N part of
          this array contains the matrix U2.
          If  JOB = 'V'  then the leading N-by-N part of this array
          contains the matrix V2**T.

  LDQ2    INTEGER
          The leading dimension of the array Q2.  LDQ2 &gt;= MAX(1,N).

  CS      (input) DOUBLE PRECISION array, dimension (2N)
          On entry, if  JOB = 'U'  then the first 2N elements of
          this array must contain the cosines and sines of the
          symplectic Givens rotations GU(i).
          If  JOB = 'V'  then the first 2N-2 elements of this array
          must contain the cosines and sines of the symplectic
          Givens rotations GV(i).

  TAU     (input) DOUBLE PRECISION array, dimension (N)
          On entry, if  JOB = 'U'  then the first N elements of
          this array must contain the scalar factors of the
          elementary reflectors FU(i).
          If  JOB = 'V'  then the first N-1 elements of this array
          must contain the scalar factors of the elementary
          reflectors FV(i).

</PRE>
<B>Workspace</B>
<PRE>
  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0,  DWORK(1)  returns the optimal
          value of LDWORK.
          On exit, if  INFO = -12,  DWORK(1)  returns the minimum
          value of LDWORK.

  LDWORK  INTEGER
          The length of the array DWORK.
          LDWORK &gt;= MAX(1,2*(N-ILO+1)).

          If LDWORK = -1, then a workspace query is assumed;
          the routine only calculates the optimal size of the
          DWORK array, returns this value as the first entry of
          the DWORK array, and no error message related to LDWORK
          is issued by XERBLA.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value.

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Benner, P., Mehrmann, V., and Xu, H.
      A numerically stable, structure preserving method for
      computing the eigenvalues of real Hamiltonian or symplectic
      pencils. Numer. Math., Vol 78 (3), pp. 329-358, 1998.

  [2] Kressner, D.
      Block algorithms for orthogonal symplectic factorizations.
      BIT, 43 (4), pp. 775-790, 2003.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>