1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
<HTML>
<HEAD><TITLE>MB05MD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB05MD">MB05MD</A></H2>
<H3>
Matrix exponential for a real non-defective matrix
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute exp(A*delta) where A is a real N-by-N non-defective
matrix with real or complex eigenvalues and delta is a scalar
value. The routine also returns the eigenvalues and eigenvectors
of A as well as (if all eigenvalues are real) the matrix product
exp(Lambda*delta) times the inverse of the eigenvector matrix
of A, where Lambda is the diagonal matrix of eigenvalues.
Optionally, the routine computes a balancing transformation to
improve the conditioning of the eigenvalues and eigenvectors.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB05MD( BALANC, N, DELTA, A, LDA, V, LDV, Y, LDY, VALR,
$ VALI, IWORK, DWORK, LDWORK, INFO )
C .. Scalar Arguments ..
CHARACTER BALANC
INTEGER INFO, LDA, LDV, LDWORK, LDY, N
DOUBLE PRECISION DELTA
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), DWORK(*), V(LDV,*), VALI(*), VALR(*),
$ Y(LDY,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
BALANC CHARACTER*1
Indicates how the input matrix should be diagonally scaled
to improve the conditioning of its eigenvalues as follows:
= 'N': Do not diagonally scale;
= 'S': Diagonally scale the matrix, i.e. replace A by
D*A*D**(-1), where D is a diagonal matrix chosen
to make the rows and columns of A more equal in
norm. Do not permute.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the matrix A. N >= 0.
DELTA (input) DOUBLE PRECISION
The scalar value delta of the problem.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading N-by-N part of this array must
contain the matrix A of the problem.
On exit, the leading N-by-N part of this array contains
the solution matrix exp(A*delta).
LDA INTEGER
The leading dimension of array A. LDA >= max(1,N).
V (output) DOUBLE PRECISION array, dimension (LDV,N)
The leading N-by-N part of this array contains the
eigenvector matrix for A.
If the k-th eigenvalue is real the k-th column of the
eigenvector matrix holds the eigenvector corresponding
to the k-th eigenvalue.
Otherwise, the k-th and (k+1)-th eigenvalues form a
complex conjugate pair and the k-th and (k+1)-th columns
of the eigenvector matrix hold the real and imaginary
parts of the eigenvectors corresponding to these
eigenvalues as follows.
If p and q denote the k-th and (k+1)-th columns of the
eigenvector matrix, respectively, then the eigenvector
corresponding to the complex eigenvalue with positive
(negative) imaginary value is given by
2
p + q*j (p - q*j), where j = -1.
LDV INTEGER
The leading dimension of array V. LDV >= max(1,N).
Y (output) DOUBLE PRECISION array, dimension (LDY,N)
The leading N-by-N part of this array contains an
intermediate result for computing the matrix exponential.
Specifically, exp(A*delta) is obtained as the product V*Y,
where V is the matrix stored in the leading N-by-N part of
the array V. If all eigenvalues of A are real, then the
leading N-by-N part of this array contains the matrix
product exp(Lambda*delta) times the inverse of the (right)
eigenvector matrix of A, where Lambda is the diagonal
matrix of eigenvalues.
LDY INTEGER
The leading dimension of array Y. LDY >= max(1,N).
VALR (output) DOUBLE PRECISION array, dimension (N)
VALI (output) DOUBLE PRECISION array, dimension (N)
These arrays contain the real and imaginary parts,
respectively, of the eigenvalues of the matrix A. The
eigenvalues are unordered except that complex conjugate
pairs of values appear consecutively with the eigenvalue
having positive imaginary part first.
</PRE>
<B>Workspace</B>
<PRE>
IWORK INTEGER array, dimension (N)
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) returns the optimal value
of LDWORK, and if N > 0, DWORK(2) returns the reciprocal
condition number of the triangular matrix used to obtain
the inverse of the eigenvector matrix.
LDWORK INTEGER
The length of the array DWORK. LDWORK >= max(1,4*N).
For good performance, LDWORK must generally be larger.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= i: if INFO = i, the QR algorithm failed to compute all
the eigenvalues; no eigenvectors have been computed;
elements i+1:N of VALR and VALI contain eigenvalues
which have converged;
= N+1: if the inverse of the eigenvector matrix could not
be formed due to an attempt to divide by zero, i.e.,
the eigenvector matrix is singular;
= N+2: if the matrix A is defective, possibly due to
rounding errors.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
This routine is an implementation of "Method 15" of the set of
methods described in reference [1], which uses an eigenvalue/
eigenvector decomposition technique. A modification of LAPACK
Library routine DGEEV is used for obtaining the right eigenvector
matrix. A condition estimate is then employed to determine if the
matrix A is near defective and hence the exponential solution is
inaccurate. In this case the routine returns with the Error
Indicator (INFO) set to N+2, and SLICOT Library routines MB05ND or
MB05OD are the preferred alternative routines to be used.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Moler, C.B. and Van Loan, C.F.
Nineteen dubious ways to compute the exponential of a matrix.
SIAM Review, 20, pp. 801-836, 1978.
[2] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J.,
Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A.,
Ostrouchov, S., and Sorensen, D.
LAPACK Users' Guide: Second Edition.
SIAM, Philadelphia, 1995.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE> 3
The algorithm requires 0(N ) operations.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* MB05MD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX
PARAMETER ( NMAX = 20 )
INTEGER LDA, LDV, LDY
PARAMETER ( LDA = NMAX, LDV = NMAX, LDY = NMAX )
INTEGER LDWORK
PARAMETER ( LDWORK = 4*NMAX )
* .. Local Scalars ..
DOUBLE PRECISION DELTA
INTEGER I, INFO, J, N
CHARACTER*1 BALANC
* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), DWORK(LDWORK), V(LDV,NMAX),
$ VALI(NMAX), VALR(NMAX), Y(LDY,NMAX)
INTEGER IWORK(NMAX)
* .. External Subroutines ..
EXTERNAL MB05MD
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
BALANC = 'N'
READ ( NIN, FMT = * ) N, DELTA
IF ( N.LE.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99992 ) N
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
* Find the exponential of the real non-defective matrix A*DELTA.
CALL MB05MD( BALANC, N, DELTA, A, LDA, V, LDV, Y, LDY, VALR,
$ VALI, IWORK, DWORK, LDWORK, INFO )
*
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
WRITE ( NOUT, FMT = 99997 )
DO 20 I = 1, N
WRITE ( NOUT, FMT = 99996 ) ( A(I,J), J = 1,N )
20 CONTINUE
WRITE ( NOUT, FMT = 99995 ) ( VALR(I), VALI(I), I = 1,N )
WRITE ( NOUT, FMT = 99994 )
DO 40 I = 1, N
WRITE ( NOUT, FMT = 99996 ) ( V(I,J), J = 1,N )
40 CONTINUE
WRITE ( NOUT, FMT = 99993 )
DO 60 I = 1, N
WRITE ( NOUT, FMT = 99996 ) ( Y(I,J), J = 1,N )
60 CONTINUE
END IF
END IF
STOP
*
99999 FORMAT (' MB05MD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from MB05MD = ',I2)
99997 FORMAT (' The solution matrix exp(A*DELTA) is ')
99996 FORMAT (20(1X,F8.4))
99995 FORMAT (/' The eigenvalues of A are ',/20(2F5.1,'*j '))
99994 FORMAT (/' The eigenvector matrix for A is ')
99993 FORMAT (/' The inverse eigenvector matrix for A (premultiplied by'
$ ,' exp(Lambda*DELTA)) is ')
99992 FORMAT (/' N is out of range.',/' N = ',I5)
END
</PRE>
<B>Program Data</B>
<PRE>
MB05MD EXAMPLE PROGRAM DATA
4 1.0
0.5 0.0 2.3 -2.6
0.0 0.5 -1.4 -0.7
2.3 -1.4 0.5 0.0
-2.6 -0.7 0.0 0.5
</PRE>
<B>Program Results</B>
<PRE>
MB05MD EXAMPLE PROGRAM RESULTS
The solution matrix exp(A*DELTA) is
26.8551 -3.2824 18.7409 -19.4430
-3.2824 4.3474 -5.1848 0.2700
18.7409 -5.1848 15.6012 -11.7228
-19.4430 0.2700 -11.7228 15.6012
The eigenvalues of A are
-3.0 0.0*j 4.0 0.0*j -1.0 0.0*j 2.0 0.0*j
The eigenvector matrix for A is
-0.7000 0.7000 0.1000 -0.1000
0.1000 -0.1000 0.7000 -0.7000
0.5000 0.5000 0.5000 0.5000
-0.5000 -0.5000 0.5000 0.5000
The inverse eigenvector matrix for A (premultiplied by exp(Lambda*DELTA)) is
-0.0349 0.0050 0.0249 -0.0249
38.2187 -5.4598 27.2991 -27.2991
0.0368 0.2575 0.1839 0.1839
-0.7389 -5.1723 3.6945 3.6945
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|