1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
<HTML>
<HEAD><TITLE>MB05OD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="MB05OD">MB05OD</A></H2>
<H3>
Matrix exponential for a real matrix, with accuracy estimate
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute exp(A*delta) where A is a real N-by-N matrix and delta
is a scalar value. The routine also returns the minimal number of
accurate digits in the 1-norm of exp(A*delta) and the number of
accurate digits in the 1-norm of exp(A*delta) at 95% confidence
level.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE MB05OD( BALANC, N, NDIAG, DELTA, A, LDA, MDIG, IDIG,
$ IWORK, DWORK, LDWORK, IWARN, INFO )
C .. Scalar Arguments ..
CHARACTER BALANC
INTEGER IDIG, INFO, IWARN, LDA, LDWORK, MDIG, N,
$ NDIAG
DOUBLE PRECISION DELTA
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), DWORK(*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
BALANC CHARACTER*1
Specifies whether or not a balancing transformation (done
by SLICOT Library routine MB04MD) is required, as follows:
= 'N', do not use balancing;
= 'S', use balancing (scaling).
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the matrix A. N >= 0.
NDIAG (input) INTEGER
The specified order of the diagonal Pade approximant.
In the absence of further information NDIAG should
be set to 9. NDIAG should not exceed 15. NDIAG >= 1.
DELTA (input) DOUBLE PRECISION
The scalar value delta of the problem.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On input, the leading N-by-N part of this array must
contain the matrix A of the problem. (This is not needed
if DELTA = 0.)
On exit, if INFO = 0, the leading N-by-N part of this
array contains the solution matrix exp(A*delta).
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,N).
MDIG (output) INTEGER
The minimal number of accurate digits in the 1-norm of
exp(A*delta).
IDIG (output) INTEGER
The number of accurate digits in the 1-norm of
exp(A*delta) at 95% confidence level.
</PRE>
<B>Workspace</B>
<PRE>
IWORK INTEGER array, dimension (N)
DWORK DOUBLE PRECISION array, dimension (LDWORK)
LDWORK INTEGER
The length of the array DWORK.
LDWORK >= N*(2*N+NDIAG+1)+NDIAG, if N > 1.
LDWORK >= 1, if N <= 1.
</PRE>
<B>Warning Indicator</B>
<PRE>
IWARN INTEGER
= 0: no warning;
= 1: if MDIG = 0 and IDIG > 0, warning for possible
inaccuracy (the exponential has been computed);
= 2: if MDIG = 0 and IDIG = 0, warning for severe
inaccuracy (the exponential has been computed);
= 3: if balancing has been requested, but it failed to
reduce the matrix norm and was not actually used.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: if the norm of matrix A*delta (after a possible
balancing) is too large to obtain an accurate
result;
= 2: if the coefficient matrix (the denominator of the
Pade approximant) is exactly singular; try a
different value of NDIAG;
= 3: if the solution exponential would overflow, possibly
due to a too large value DELTA; the calculations
stopped prematurely. This error is not likely to
appear.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The exponential of the matrix A is evaluated from a diagonal Pade
approximant. This routine is a modification of the subroutine
PADE, described in reference [1]. The routine implements an
algorithm which exploits the identity
(exp[(2**-m)*A]) ** (2**m) = exp(A),
where m is an integer determined by the algorithm, to improve the
accuracy for matrices with large norms.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Ward, R.C.
Numerical computation of the matrix exponential with accuracy
estimate.
SIAM J. Numer. Anal., 14, pp. 600-610, 1977.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE> 3
The algorithm requires 0(N ) operations.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* MB05OD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX
PARAMETER ( NMAX = 20 )
INTEGER LDA
PARAMETER ( LDA = NMAX )
INTEGER NDIAG
PARAMETER ( NDIAG = 9 )
INTEGER LDWORK
PARAMETER ( LDWORK = NMAX*( 2*NMAX+NDIAG+1 )+NDIAG )
* .. Local Scalars ..
DOUBLE PRECISION DELTA
INTEGER I, IDIG, INFO, IWARN, J, MDIG, N
CHARACTER*1 BALANC
* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), DWORK(LDWORK)
INTEGER IWORK(NMAX)
* .. External Subroutines ..
EXTERNAL MB05OD
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, DELTA, BALANC
IF ( N.LE.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99994 ) N
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
* Find the exponential of the real defective matrix A*DELTA.
CALL MB05OD( BALANC, N, NDIAG, DELTA, A, LDA, MDIG, IDIG,
$ IWORK, DWORK, LDWORK, IWARN, INFO )
*
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
IF ( IWARN.NE.0 )
$ WRITE ( NOUT, FMT = 99993 ) IWARN
WRITE ( NOUT, FMT = 99997 )
DO 20 I = 1, N
WRITE ( NOUT, FMT = 99996 ) ( A(I,J), J = 1,N )
20 CONTINUE
WRITE ( NOUT, FMT = 99995 ) MDIG, IDIG
END IF
END IF
STOP
*
99999 FORMAT (' MB05OD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from MB05OD = ',I2)
99997 FORMAT (' The solution matrix E = exp(A*DELTA) is ')
99996 FORMAT (20(1X,F8.4))
99995 FORMAT (/' Minimal number of accurate digits in the norm of E =',
$ I4,/' Number of accurate digits in the norm of E',/' ',
$ ' at 95 per cent confidence interval =',I4)
99994 FORMAT (/' N is out of range.',/' N = ',I5)
99993 FORMAT (' IWARN on exit from MB05OD = ',I2)
END
</PRE>
<B>Program Data</B>
<PRE>
MB05OD EXAMPLE PROGRAM DATA
3 1.0 S
2.0 1.0 1.0
0.0 3.0 2.0
1.0 0.0 4.0
</PRE>
<B>Program Results</B>
<PRE>
MB05OD EXAMPLE PROGRAM RESULTS
The solution matrix E = exp(A*DELTA) is
22.5984 17.2073 53.8144
24.4047 27.6033 83.2241
29.4097 12.2024 81.4177
Minimal number of accurate digits in the norm of E = 12
Number of accurate digits in the norm of E
at 95 per cent confidence interval = 15
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|