1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
<HTML>
<HEAD><TITLE>SB01MD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="SB01MD">SB01MD</A></H2>
<H3>
State feedback matrix of a linear time-invariant single-input system
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To determine the one-dimensional state feedback matrix G of the
linear time-invariant single-input system
dX/dt = A * X + B * U,
where A is an NCONT-by-NCONT matrix and B is an NCONT element
vector such that the closed-loop system
dX/dt = (A - B * G) * X
has desired poles. The system must be preliminarily reduced
to orthogonal canonical form using the SLICOT Library routine
AB01MD.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE SB01MD( NCONT, N, A, LDA, B, WR, WI, Z, LDZ, G, DWORK,
$ INFO )
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDZ, N, NCONT
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(*), DWORK(*), G(*), WI(*), WR(*),
$ Z(LDZ,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
</PRE>
<B>Input/Output Parameters</B>
<PRE>
NCONT (input) INTEGER
The order of the matrix A as produced by SLICOT Library
routine AB01MD. NCONT >= 0.
N (input) INTEGER
The order of the matrix Z. N >= NCONT.
A (input/output) DOUBLE PRECISION array, dimension
(LDA,NCONT)
On entry, the leading NCONT-by-NCONT part of this array
must contain the canonical form of the state dynamics
matrix A as produced by SLICOT Library routine AB01MD.
On exit, the leading NCONT-by-NCONT part of this array
contains the upper quasi-triangular form S of the closed-
loop system matrix (A - B * G), that is triangular except
for possible 2-by-2 diagonal blocks.
(To reconstruct the closed-loop system matrix see
FURTHER COMMENTS below.)
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,NCONT).
B (input/output) DOUBLE PRECISION array, dimension (NCONT)
On entry, this array must contain the canonical form of
the input/state vector B as produced by SLICOT Library
routine AB01MD.
On exit, this array contains the transformed vector Z * B
of the closed-loop system.
WR (input) DOUBLE PRECISION array, dimension (NCONT)
WI (input) DOUBLE PRECISION array, dimension (NCONT)
These arrays must contain the real and imaginary parts,
respectively, of the desired poles of the closed-loop
system. The poles can be unordered, except that complex
conjugate pairs of poles must appear consecutively.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
On entry, the leading N-by-N part of this array must
contain the orthogonal transformation matrix as produced
by SLICOT Library routine AB01MD, which reduces the system
to canonical form.
On exit, the leading NCONT-by-NCONT part of this array
contains the orthogonal matrix Z which reduces the closed-
loop system matrix (A - B * G) to upper quasi-triangular
form.
LDZ INTEGER
The leading dimension of array Z. LDZ >= MAX(1,N).
G (output) DOUBLE PRECISION array, dimension (NCONT)
This array contains the one-dimensional state feedback
matrix G of the original system.
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (3*NCONT)
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The method is based on the orthogonal reduction of the closed-loop
system matrix (A - B * G) to upper quasi-triangular form S whose
1-by-1 and 2-by-2 diagonal blocks correspond to the desired poles.
That is, S = Z'*(A - B * G)*Z, where Z is an orthogonal matrix.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Petkov, P. Hr.
A Computational Algorithm for Pole Assignment of Linear
Single Input Systems.
Internal Report 81/2, Control Systems Research Group, School
of Electronic Engineering and Computer Science, Kingston
Polytechnic, 1981.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE> 3
The algorithm requires 0(NCONT ) operations and is backward
stable.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
If required, the closed-loop system matrix (A - B * G) can be
formed from the matrix product Z * S * Z' (where S and Z are the
matrices output in arrays A and Z respectively).
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* SB01MD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX
PARAMETER ( NMAX = 20 )
INTEGER LDA, LDZ
PARAMETER ( LDA = NMAX, LDZ = NMAX )
INTEGER LDWORK
PARAMETER ( LDWORK = 3*NMAX )
* .. Local Scalars ..
DOUBLE PRECISION TOL
INTEGER I, INFO1, INFO2, J, N, NCONT
CHARACTER*1 JOBZ
* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), B(NMAX), DWORK(LDWORK), G(NMAX),
$ WI(NMAX), WR(NMAX), Z(LDZ,NMAX)
* .. External Subroutines ..
EXTERNAL AB01MD, SB01MD
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, TOL, JOBZ
IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99995 ) N
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
READ ( NIN, FMT = * ) ( B(I), I = 1,N )
READ ( NIN, FMT = * ) ( WR(I), I = 1,N )
READ ( NIN, FMT = * ) ( WI(I), I = 1,N )
* First reduce the given system to canonical form.
CALL AB01MD( JOBZ, N, A, LDA, B, NCONT, Z, LDZ, DWORK, TOL,
$ DWORK(N+1), LDWORK-N, INFO1 )
*
IF ( INFO1.EQ.0 ) THEN
* Find the one-dimensional state feedback matrix G.
CALL SB01MD( NCONT, N, A, LDA, B, WR, WI, Z, LDZ, G, DWORK,
$ INFO2 )
*
IF ( INFO2.NE.0 ) THEN
WRITE ( NOUT, FMT = 99997 ) INFO2
ELSE
WRITE ( NOUT, FMT = 99996 ) ( G(I), I = 1,NCONT )
END IF
ELSE
WRITE ( NOUT, FMT = 99998 ) INFO1
END IF
END IF
STOP
*
99999 FORMAT (' SB01MD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from AB01MD =',I2)
99997 FORMAT (' INFO on exit from SB01MD =',I2)
99996 FORMAT (' The one-dimensional state feedback matrix G is',
$ /20(1X,F8.4))
99995 FORMAT (/' N is out of range.',/' N = ',I5)
END
</PRE>
<B>Program Data</B>
<PRE>
SB01MD EXAMPLE PROGRAM DATA
4 0.0 I
-1.0 0.0 2.0 -3.0
1.0 -4.0 3.0 -1.0
0.0 2.0 4.0 -5.0
0.0 0.0 -1.0 -2.0
1.0 0.0 0.0 0.0
-1.0 -1.0 -1.0 -1.0
0.0 0.0 0.0 0.0
</PRE>
<B>Program Results</B>
<PRE>
SB01MD EXAMPLE PROGRAM RESULTS
The one-dimensional state feedback matrix G is
1.0000 29.0000 93.0000 -76.0000
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|