1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
<HTML>
<HEAD><TITLE>SB02MD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="SB02MD">SB02MD</A></H2>
<H3>
Solution of continuous- or discrete-time algebraic Riccati equations (Schur vectors method)
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To solve for X either the continuous-time algebraic Riccati
equation
-1
Q + A'*X + X*A - X*B*R B'*X = 0 (1)
or the discrete-time algebraic Riccati equation
-1
X = A'*X*A - A'*X*B*(R + B'*X*B) B'*X*A + Q (2)
where A, B, Q and R are N-by-N, N-by-M, N-by-N and M-by-M matrices
respectively, with Q symmetric and R symmetric nonsingular; X is
an N-by-N symmetric matrix.
-1
The matrix G = B*R B' must be provided on input, instead of B and
R, that is, for instance, the continuous-time equation
Q + A'*X + X*A - X*G*X = 0 (3)
is solved, where G is an N-by-N symmetric matrix. SLICOT Library
routine SB02MT should be used to compute G, given B and R. SB02MT
also enables to solve Riccati equations corresponding to optimal
problems with coupling terms.
The routine also returns the computed values of the closed-loop
spectrum of the optimal system, i.e., the stable eigenvalues
lambda(1),...,lambda(N) of the corresponding Hamiltonian or
symplectic matrix associated to the optimal problem.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE SB02MD( DICO, HINV, UPLO, SCAL, SORT, N, A, LDA, G,
$ LDG, Q, LDQ, RCOND, WR, WI, S, LDS, U, LDU,
$ IWORK, DWORK, LDWORK, BWORK, INFO )
C .. Scalar Arguments ..
CHARACTER DICO, HINV, SCAL, SORT, UPLO
INTEGER INFO, LDA, LDG, LDQ, LDS, LDU, LDWORK, N
DOUBLE PRECISION RCOND
C .. Array Arguments ..
LOGICAL BWORK(*)
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), DWORK(*), G(LDG,*), Q(LDQ,*),
$ S(LDS,*), U(LDU,*), WR(*), WI(*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
DICO CHARACTER*1
Specifies the type of Riccati equation to be solved as
follows:
= 'C': Equation (3), continuous-time case;
= 'D': Equation (2), discrete-time case.
HINV CHARACTER*1
If DICO = 'D', specifies which symplectic matrix is to be
constructed, as follows:
= 'D': The matrix H in (5) (see METHOD) is constructed;
= 'I': The inverse of the matrix H in (5) is constructed.
HINV is not used if DICO = 'C'.
UPLO CHARACTER*1
Specifies which triangle of the matrices G and Q is
stored, as follows:
= 'U': Upper triangle is stored;
= 'L': Lower triangle is stored.
SCAL CHARACTER*1
Specifies whether or not a scaling strategy should be
used, as follows:
= 'G': General scaling should be used;
= 'N': No scaling should be used.
SORT CHARACTER*1
Specifies which eigenvalues should be obtained in the top
of the Schur form, as follows:
= 'S': Stable eigenvalues come first;
= 'U': Unstable eigenvalues come first.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the matrices A, Q, G and X. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading N-by-N part of this array must
contain the coefficient matrix A of the equation.
On exit, if DICO = 'D', and INFO = 0 or INFO > 1, the
-1
leading N-by-N part of this array contains the matrix A .
Otherwise, the array A is unchanged on exit.
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,N).
G (input) DOUBLE PRECISION array, dimension (LDG,N)
The leading N-by-N upper triangular part (if UPLO = 'U')
or lower triangular part (if UPLO = 'L') of this array
must contain the upper triangular part or lower triangular
part, respectively, of the symmetric matrix G.
The strictly lower triangular part (if UPLO = 'U') or
strictly upper triangular part (if UPLO = 'L') is not
referenced.
LDG INTEGER
The leading dimension of array G. LDG >= MAX(1,N).
Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
On entry, the leading N-by-N upper triangular part (if
UPLO = 'U') or lower triangular part (if UPLO = 'L') of
this array must contain the upper triangular part or lower
triangular part, respectively, of the symmetric matrix Q.
The strictly lower triangular part (if UPLO = 'U') or
strictly upper triangular part (if UPLO = 'L') is not
used.
On exit, if INFO = 0, the leading N-by-N part of this
array contains the solution matrix X of the problem.
LDQ INTEGER
The leading dimension of array N. LDQ >= MAX(1,N).
RCOND (output) DOUBLE PRECISION
An estimate of the reciprocal of the condition number (in
the 1-norm) of the N-th order system of algebraic
equations from which the solution matrix X is obtained.
WR (output) DOUBLE PRECISION array, dimension (2*N)
WI (output) DOUBLE PRECISION array, dimension (2*N)
If INFO = 0 or INFO = 5, these arrays contain the real and
imaginary parts, respectively, of the eigenvalues of the
2N-by-2N matrix S, ordered as specified by SORT (except
for the case HINV = 'D', when the order is opposite to
that specified by SORT). The leading N elements of these
arrays contain the closed-loop spectrum of the system
-1
matrix A - B*R *B'*X, if DICO = 'C', or of the matrix
-1
A - B*(R + B'*X*B) B'*X*A, if DICO = 'D'. Specifically,
lambda(k) = WR(k) + j*WI(k), for k = 1,2,...,N.
S (output) DOUBLE PRECISION array, dimension (LDS,2*N)
If INFO = 0 or INFO = 5, the leading 2N-by-2N part of this
array contains the ordered real Schur form S of the
Hamiltonian or symplectic matrix H. That is,
(S S )
( 11 12)
S = ( ),
(0 S )
( 22)
where S , S and S are N-by-N matrices.
11 12 22
LDS INTEGER
The leading dimension of array S. LDS >= MAX(1,2*N).
U (output) DOUBLE PRECISION array, dimension (LDU,2*N)
If INFO = 0 or INFO = 5, the leading 2N-by-2N part of this
array contains the transformation matrix U which reduces
the Hamiltonian or symplectic matrix H to the ordered real
Schur form S. That is,
(U U )
( 11 12)
U = ( ),
(U U )
( 21 22)
where U , U , U and U are N-by-N matrices.
11 12 21 22
LDU INTEGER
The leading dimension of array U. LDU >= MAX(1,2*N).
</PRE>
<B>Workspace</B>
<PRE>
IWORK INTEGER array, dimension (2*N)
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) returns the optimal value
of LDWORK and DWORK(2) returns the scaling factor used
(set to 1 if SCAL = 'N'), also set if INFO = 5;
if DICO = 'D', DWORK(3) returns the reciprocal condition
number of the given matrix A.
LDWORK INTEGER
The length of the array DWORK.
LDWORK >= MAX(2,6*N) if DICO = 'C';
LDWORK >= MAX(3,6*N) if DICO = 'D'.
For optimum performance LDWORK should be larger.
BWORK LOGICAL array, dimension (2*N)
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: if matrix A is (numerically) singular in discrete-
time case;
= 2: if the Hamiltonian or symplectic matrix H cannot be
reduced to real Schur form;
= 3: if the real Schur form of the Hamiltonian or
symplectic matrix H cannot be appropriately ordered;
= 4: if the Hamiltonian or symplectic matrix H has less
than N stable eigenvalues;
= 5: if the N-th order system of linear algebraic
equations, from which the solution matrix X would
be obtained, is singular to working precision.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The method used is the Schur vector approach proposed by Laub.
It is assumed that [A,B] is a stabilizable pair (where for (3) B
is any matrix such that B*B' = G with rank(B) = rank(G)), and
[E,A] is a detectable pair, where E is any matrix such that
E*E' = Q with rank(E) = rank(Q). Under these assumptions, any of
the algebraic Riccati equations (1)-(3) is known to have a unique
non-negative definite solution. See [2].
Now consider the 2N-by-2N Hamiltonian or symplectic matrix
( A -G )
H = ( ), (4)
(-Q -A'),
for continuous-time equation, and
-1 -1
( A A *G )
H = ( -1 -1 ), (5)
(Q*A A' + Q*A *G)
-1
for discrete-time equation, respectively, where G = B*R *B'.
The assumptions guarantee that H in (4) has no pure imaginary
eigenvalues, and H in (5) has no eigenvalues on the unit circle.
If Y is an N-by-N matrix then there exists an orthogonal matrix U
such that U'*Y*U is an upper quasi-triangular matrix. Moreover, U
can be chosen so that the 2-by-2 and 1-by-1 diagonal blocks
(corresponding to the complex conjugate eigenvalues and real
eigenvalues respectively) appear in any desired order. This is the
ordered real Schur form. Thus, we can find an orthogonal
similarity transformation U which puts (4) or (5) in ordered real
Schur form
U'*H*U = S = (S(1,1) S(1,2))
( 0 S(2,2))
where S(i,j) is an N-by-N matrix and the eigenvalues of S(1,1)
have negative real parts in case of (4), or moduli greater than
one in case of (5). If U is conformably partitioned into four
N-by-N blocks
U = (U(1,1) U(1,2))
(U(2,1) U(2,2))
with respect to the assumptions we then have
(a) U(1,1) is invertible and X = U(2,1)*inv(U(1,1)) solves (1),
(2), or (3) with X = X' and non-negative definite;
(b) the eigenvalues of S(1,1) (if DICO = 'C') or S(2,2) (if
DICO = 'D') are equal to the eigenvalues of optimal system
(the 'closed-loop' spectrum).
[A,B] is stabilizable if there exists a matrix F such that (A-BF)
is stable. [E,A] is detectable if [A',E'] is stabilizable.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Laub, A.J.
A Schur Method for Solving Algebraic Riccati equations.
IEEE Trans. Auto. Contr., AC-24, pp. 913-921, 1979.
[2] Wonham, W.M.
On a matrix Riccati equation of stochastic control.
SIAM J. Contr., 6, pp. 681-697, 1968.
[3] Sima, V.
Algorithms for Linear-Quadratic Optimization.
Pure and Applied Mathematics: A Series of Monographs and
Textbooks, vol. 200, Marcel Dekker, Inc., New York, 1996.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE> 3
The algorithm requires 0(N ) operations.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
To obtain a stabilizing solution of the algebraic Riccati
equation for DICO = 'D', set SORT = 'U', if HINV = 'D', or set
SORT = 'S', if HINV = 'I'.
The routine can also compute the anti-stabilizing solutions of
the algebraic Riccati equations, by specifying
SORT = 'U' if DICO = 'D' and HINV = 'I', or DICO = 'C', or
SORT = 'S' if DICO = 'D' and HINV = 'D'.
Usually, the combinations HINV = 'D' and SORT = 'U', or HINV = 'I'
and SORT = 'U', will be faster then the other combinations [3].
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* SB02MD EXAMPLE PROGRAM TEXT.
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX
PARAMETER ( NMAX = 20 )
INTEGER LDA, LDG, LDQ, LDS, LDU
PARAMETER ( LDA = NMAX, LDG = NMAX, LDQ = NMAX,
$ LDS = 2*NMAX, LDU = 2*NMAX )
INTEGER LIWORK
PARAMETER ( LIWORK = 2*NMAX )
INTEGER LDWORK
PARAMETER ( LDWORK = 6*NMAX )
* .. Local Scalars ..
DOUBLE PRECISION RCOND
INTEGER I, INFO, J, N
CHARACTER DICO, HINV, SCAL, SORT, UPLO
* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), DWORK(LDWORK), G(LDG,NMAX),
$ Q(LDQ,NMAX), S(LDS,2*NMAX), U(LDU,2*NMAX),
$ WI(2*NMAX), WR(2*NMAX)
INTEGER IWORK(LIWORK)
LOGICAL BWORK(LIWORK)
* .. External Subroutines ..
EXTERNAL SB02MD
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, DICO, HINV, UPLO, SCAL, SORT
IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99995 ) N
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
READ ( NIN, FMT = * ) ( ( Q(I,J), J = 1,N ), I = 1,N )
READ ( NIN, FMT = * ) ( ( G(I,J), J = 1,N ), I = 1,N )
* Find the solution matrix X.
CALL SB02MD( DICO, HINV, UPLO, SCAL, SORT, N, A, LDA, G, LDG,
$ Q, LDQ, RCOND, WR, WI, S, LDS, U, LDU, IWORK,
$ DWORK, LDWORK, BWORK, INFO )
*
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
WRITE ( NOUT, FMT = 99997 ) RCOND
DO 20 I = 1, N
WRITE ( NOUT, FMT = 99996 ) ( Q(I,J), J = 1,N )
20 CONTINUE
END IF
END IF
STOP
*
99999 FORMAT (' SB02MD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from SB02MD = ',I2)
99997 FORMAT (' RCOND = ',F4.2,//' The solution matrix X is ')
99996 FORMAT (20(1X,F8.4))
99995 FORMAT (/' N is out of range.',/' N = ',I5)
END
</PRE>
<B>Program Data</B>
<PRE>
SB02MD EXAMPLE PROGRAM DATA
2 C D U N S
0.0 1.0
0.0 0.0
1.0 0.0
0.0 2.0
0.0 0.0
0.0 1.0
</PRE>
<B>Program Results</B>
<PRE>
SB02MD EXAMPLE PROGRAM RESULTS
RCOND = 0.31
The solution matrix X is
2.0000 1.0000
1.0000 2.0000
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|