File: SB02MU.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (210 lines) | stat: -rw-r--r-- 6,955 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
<HTML>
<HEAD><TITLE>SB02MU - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="SB02MU">SB02MU</A></H2>
<H3>
Constructing the 2n-by-2n Hamiltonian or symplectic matrix for linear-quadratic optimization problems
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To construct the 2n-by-2n Hamiltonian or symplectic matrix S
  associated to the linear-quadratic optimization problem, used to
  solve the continuous- or discrete-time algebraic Riccati equation,
  respectively.

  For a continuous-time problem, S is defined by

          (  A  -G )
      S = (        ),                                       (1)
          ( -Q  -A')

  and for a discrete-time problem by

              -1       -1
          (  A        A  *G     )
      S = (   -1           -1   ),                          (2)
          ( QA     A' + Q*A  *G )

  or

                    -T         -T
          (  A + G*A  *Q   -G*A   )
      S = (      -T            -T ),                        (3)
          (    -A  *Q         A   )

  where A, G, and Q are N-by-N matrices, with G and Q symmetric.
  Matrix A must be nonsingular in the discrete-time case.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE SB02MU( DICO, HINV, UPLO, N, A, LDA, G, LDG, Q, LDQ, S,
     $                   LDS, IWORK, DWORK, LDWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER         DICO, HINV, UPLO
      INTEGER           INFO, LDA, LDG, LDQ, LDS, LDWORK, N
C     .. Array Arguments ..
      INTEGER           IWORK(*)
      DOUBLE PRECISION  A(LDA,*), DWORK(*), G(LDG,*), Q(LDQ,*),
     $                  S(LDS,*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  DICO    CHARACTER*1
          Specifies the type of the system as follows:
          = 'C':  Continuous-time system;
          = 'D':  Discrete-time system.

  HINV    CHARACTER*1
          If DICO = 'D', specifies which of the matrices (2) or (3)
          is constructed, as follows:
          = 'D':  The matrix S in (2) is constructed;
          = 'I':  The (inverse) matrix S in (3) is constructed.
          HINV is not referenced if DICO = 'C'.

  UPLO    CHARACTER*1
          Specifies which triangle of the matrices G and Q is
          stored, as follows:
          = 'U':  Upper triangle is stored;
          = 'L':  Lower triangle is stored.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the matrices A, G, and Q.  N &gt;= 0.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N part of this array must
          contain the matrix A.
          On exit, if DICO = 'D', and INFO = 0, the leading N-by-N
                                                  -1
          part of this array contains the matrix A  .
          Otherwise, the array A is unchanged on exit.

  LDA     INTEGER
          The leading dimension of array A.  LDA &gt;= MAX(1,N).

  G       (input) DOUBLE PRECISION array, dimension (LDG,N)
          The leading N-by-N upper triangular part (if UPLO = 'U')
          or lower triangular part (if UPLO = 'L') of this array
          must contain the upper triangular part or lower triangular
          part, respectively, of the symmetric matrix G.
          The strictly lower triangular part (if UPLO = 'U') or
          strictly upper triangular part (if UPLO = 'L') is not
          referenced.

  LDG     INTEGER
          The leading dimension of array G.  LDG &gt;= MAX(1,N).

  Q       (input) DOUBLE PRECISION array, dimension (LDQ,N)
          The leading N-by-N upper triangular part (if UPLO = 'U')
          or lower triangular part (if UPLO = 'L') of this array
          must contain the upper triangular part or lower triangular
          part, respectively, of the symmetric matrix Q.
          The strictly lower triangular part (if UPLO = 'U') or
          strictly upper triangular part (if UPLO = 'L') is not
          referenced.

  LDQ     INTEGER
          The leading dimension of array Q.  LDQ &gt;= MAX(1,N).

  S       (output) DOUBLE PRECISION array, dimension (LDS,2*N)
          If INFO = 0, the leading 2N-by-2N part of this array
          contains the Hamiltonian or symplectic matrix of the
          problem.

  LDS     INTEGER
          The leading dimension of array S.  LDS &gt;= MAX(1,2*N).

</PRE>
<B>Workspace</B>
<PRE>
  IWORK   INTEGER array, dimension (2*N)

  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) returns the optimal value
          of LDWORK; if DICO = 'D', DWORK(2) returns the reciprocal
          condition number of the given matrix  A.

  LDWORK  INTEGER
          The length of the array DWORK.
          LDWORK &gt;= 1          if DICO = 'C';
          LDWORK &gt;= MAX(2,4*N) if DICO = 'D'.
          For optimum performance LDWORK should be larger, if
          DICO = 'D'.

          If LDWORK = -1, then a workspace query is assumed;
          the routine only calculates the optimal size of the
          DWORK array, returns this value as the first entry of
          the DWORK array, and no error message related to LDWORK
          is issued by XERBLA.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = i:  if the leading i-by-i (1 &lt;= i &lt;= N) upper triangular
                submatrix of A is singular in discrete-time case;
          = N+1:  if matrix A is numerically singular in discrete-
                time case.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  For a continuous-time problem, the 2n-by-2n Hamiltonian matrix (1)
  is constructed.
  For a discrete-time problem, the 2n-by-2n symplectic matrix (2) or
  (3) - the inverse of the matrix in (2) - is constructed.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The discrete-time case needs the inverse of the matrix A, hence
  the routine should not be used when A is ill-conditioned.
                            3
  The algorithm requires 0(n ) floating point operations in the
  discrete-time case.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>