1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
|
<HTML>
<HEAD><TITLE>SB02OY - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="SB02OY">SB02OY</A></H2>
<H3>
Constructing the extended Hamiltonian or symplectic matrix pairs for linear-quadratic optimization problems, and compressing them to 2N-by-2N matrices
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To construct the extended matrix pairs for the computation of the
solution of the algebraic matrix Riccati equations arising in the
problems of optimal control, both discrete and continuous-time,
and of spectral factorization, both discrete and continuous-time.
These matrix pairs, of dimension 2N + M, are given by
discrete-time continuous-time
|A 0 B| |E 0 0| |A 0 B| |E 0 0|
|Q -E' L| - z |0 -A' 0|, |Q A' L| - s |0 -E' 0|. (1)
|L' 0 R| |0 -B' 0| |L' B' R| |0 0 0|
After construction, these pencils are compressed to a form
(see [1])
lambda x A - B ,
f f
where A and B are 2N-by-2N matrices.
f f
-1
Optionally, matrix G = BR B' may be given instead of B and R;
then, for L = 0, 2N-by-2N matrix pairs are directly constructed as
discrete-time continuous-time
|A 0 | |E G | |A -G | |E 0 |
| | - z | |, | | - s | |. (2)
|Q -E'| |0 -A'| |Q A'| |0 -E'|
Similar pairs are obtained for non-zero L, if SLICOT Library
routine SB02MT is called before SB02OY.
Other options include the case with E identity matrix, L a zero
matrix, or Q and/or R given in a factored form, Q = C'C, R = D'D.
For spectral factorization problems, there are minor differences
(e.g., B is replaced by C').
The second matrix in (2) is not constructed in the continuous-time
case if E is specified as being an identity matrix.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE SB02OY( TYPE, DICO, JOBB, FACT, UPLO, JOBL, JOBE, N, M,
$ P, A, LDA, B, LDB, Q, LDQ, R, LDR, L, LDL, E,
$ LDE, AF, LDAF, BF, LDBF, TOL, IWORK, DWORK,
$ LDWORK, INFO )
C .. Scalar Arguments ..
CHARACTER DICO, FACT, JOBB, JOBE, JOBL, TYPE, UPLO
INTEGER INFO, LDA, LDAF, LDB, LDBF, LDE, LDL, LDQ, LDR,
$ LDWORK, M, N, P
DOUBLE PRECISION TOL
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), AF(LDAF,*), B(LDB,*), BF(LDBF,*),
$ DWORK(*), E(LDE,*), L(LDL,*), Q(LDQ,*), R(LDR,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
TYPE CHARACTER*1
Specifies the type of problem to be addressed as follows:
= 'O': Optimal control problem;
= 'S': Spectral factorization problem.
DICO CHARACTER*1
Specifies the type of linear system considered as follows:
= 'C': Continuous-time system;
= 'D': Discrete-time system.
JOBB CHARACTER*1
Specifies whether or not the matrix G is given, instead
of the matrices B and R, as follows:
= 'B': B and R are given;
= 'G': G is given.
For JOBB = 'G', a 2N-by-2N matrix pair is directly
obtained assuming L = 0 (see the description of JOBL).
FACT CHARACTER*1
Specifies whether or not the matrices Q and/or R (if
JOBB = 'B') are factored, as follows:
= 'N': Not factored, Q and R are given;
= 'C': C is given, and Q = C'C;
= 'D': D is given, and R = D'D (if TYPE = 'O'), or
R = D + D' (if TYPE = 'S');
= 'B': Both factors C and D are given, Q = C'C, R = D'D
(or R = D + D').
UPLO CHARACTER*1
If JOBB = 'G', or FACT = 'N', specifies which triangle of
the matrices G and Q (if FACT = 'N'), or Q and R (if
JOBB = 'B'), is stored, as follows:
= 'U': Upper triangle is stored;
= 'L': Lower triangle is stored.
JOBL CHARACTER*1
Specifies whether or not the matrix L is zero, as follows:
= 'Z': L is zero;
= 'N': L is nonzero.
JOBL is not used if JOBB = 'G' and JOBL = 'Z' is assumed.
Using SLICOT Library routine SB02MT to compute the
corresponding A and Q in this case, before calling SB02OY,
enables to obtain 2N-by-2N matrix pairs directly.
JOBE CHARACTER*1
Specifies whether or not the matrix E is identity, as
follows:
= 'I': E is the identity matrix;
= 'N': E is a general matrix.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the matrices A, Q, and E, and the number
of rows of the matrices B and L. N >= 0.
M (input) INTEGER
If JOBB = 'B', M is the order of the matrix R, and the
number of columns of the matrix B. M >= 0.
M is not used if JOBB = 'G'.
P (input) INTEGER
If FACT = 'C' or 'D' or 'B', or if TYPE = 'S', P is the
number of rows of the matrix C and/or D, respectively.
P >= 0, and if JOBB = 'B' and TYPE = 'S', then P = M.
Otherwise, P is not used.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The leading N-by-N part of this array must contain the
state matrix A of the system.
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,N).
B (input) DOUBLE PRECISION array, dimension (LDB,*)
If JOBB = 'B', the leading N-by-M part of this array must
contain the input matrix B of the system.
If JOBB = 'G', the leading N-by-N upper triangular part
(if UPLO = 'U') or lower triangular part (if UPLO = 'L')
of this array must contain the upper triangular part or
lower triangular part, respectively, of the matrix
-1
G = BR B'. The strictly lower triangular part (if
UPLO = 'U') or strictly upper triangular part (if
UPLO = 'L') is not referenced.
LDB INTEGER
The leading dimension of array B. LDB >= MAX(1,N).
Q (input) DOUBLE PRECISION array, dimension (LDQ,N)
If FACT = 'N' or 'D', the leading N-by-N upper triangular
part (if UPLO = 'U') or lower triangular part (if UPLO =
'L') of this array must contain the upper triangular part
or lower triangular part, respectively, of the symmetric
output weighting matrix Q. The strictly lower triangular
part (if UPLO = 'U') or strictly upper triangular part (if
UPLO = 'L') is not referenced.
If FACT = 'C' or 'B', the leading P-by-N part of this
array must contain the output matrix C of the system.
LDQ INTEGER
The leading dimension of array Q.
LDQ >= MAX(1,N) if FACT = 'N' or 'D',
LDQ >= MAX(1,P) if FACT = 'C' or 'B'.
R (input) DOUBLE PRECISION array, dimension (LDR,M)
If FACT = 'N' or 'C', the leading M-by-M upper triangular
part (if UPLO = 'U') or lower triangular part (if UPLO =
'L') of this array must contain the upper triangular part
or lower triangular part, respectively, of the symmetric
input weighting matrix R. The strictly lower triangular
part (if UPLO = 'U') or strictly upper triangular part (if
UPLO = 'L') is not referenced.
If FACT = 'D' or 'B', the leading P-by-M part of this
array must contain the direct transmission matrix D of the
system.
If JOBB = 'G', this array is not referenced.
LDR INTEGER
The leading dimension of array R.
LDR >= MAX(1,M) if JOBB = 'B' and FACT = 'N' or 'C';
LDR >= MAX(1,P) if JOBB = 'B' and FACT = 'D' or 'B';
LDR >= 1 if JOBB = 'G'.
L (input) DOUBLE PRECISION array, dimension (LDL,M)
If JOBL = 'N' (and JOBB = 'B'), the leading N-by-M part of
this array must contain the cross weighting matrix L.
If JOBL = 'Z' or JOBB = 'G', this array is not referenced.
LDL INTEGER
The leading dimension of array L.
LDL >= MAX(1,N) if JOBL = 'N';
LDL >= 1 if JOBL = 'Z' or JOBB = 'G'.
E (input) DOUBLE PRECISION array, dimension (LDE,N)
If JOBE = 'N', the leading N-by-N part of this array must
contain the matrix E of the descriptor system.
If JOBE = 'I', E is taken as identity and this array is
not referenced.
LDE INTEGER
The leading dimension of array E.
LDE >= MAX(1,N) if JOBE = 'N';
LDE >= 1 if JOBE = 'I'.
AF (output) DOUBLE PRECISION array, dimension (LDAF,*)
The leading 2N-by-2N part of this array contains the
matrix A in the matrix pencil.
f
Array AF must have 2*N+M columns if JOBB = 'B', and 2*N
columns, otherwise.
LDAF INTEGER
The leading dimension of array AF.
LDAF >= MAX(1,2*N+M) if JOBB = 'B',
LDAF >= MAX(1,2*N) if JOBB = 'G'.
BF (output) DOUBLE PRECISION array, dimension (LDBF,2*N)
If DICO = 'D' or JOBB = 'B' or JOBE = 'N', the leading
2N-by-2N part of this array contains the matrix B in the
f
matrix pencil.
The last M zero columns are never constructed.
If DICO = 'C' and JOBB = 'G' and JOBE = 'I', this array
is not referenced.
LDBF INTEGER
The leading dimension of array BF.
LDBF >= MAX(1,2*N+M) if JOBB = 'B',
LDBF >= MAX(1,2*N) if JOBB = 'G' and ( DICO = 'D' or
JOBE = 'N' ),
LDBF >= 1 if JOBB = 'G' and ( DICO = 'C' and
JOBE = 'I' ).
</PRE>
<B>Tolerances</B>
<PRE>
TOL DOUBLE PRECISION
The tolerance to be used to test for near singularity of
the original matrix pencil, specifically of the triangular
factor obtained during the reduction process. If the user
sets TOL > 0, then the given value of TOL is used as a
lower bound for the reciprocal condition number of that
matrix; a matrix whose estimated condition number is less
than 1/TOL is considered to be nonsingular. If the user
sets TOL <= 0, then a default tolerance, defined by
TOLDEF = EPS, is used instead, where EPS is the machine
precision (see LAPACK Library routine DLAMCH).
This parameter is not referenced if JOBB = 'G'.
</PRE>
<B>Workspace</B>
<PRE>
IWORK INTEGER array, dimension (LIWORK)
LIWORK >= M if JOBB = 'B',
LIWORK >= 1 if JOBB = 'G'.
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) returns the optimal value
of LDWORK. If JOBB = 'B', DWORK(2) returns the reciprocal
of the condition number of the M-by-M lower triangular
matrix obtained after compression.
LDWORK INTEGER
The length of the array DWORK.
LDWORK >= 1 if JOBB = 'G',
LDWORK >= MAX(1,2*N + M,3*M) if JOBB = 'B'.
For optimum performance LDWORK should be larger.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: if the computed extended matrix pencil is singular,
possibly due to rounding errors.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The extended matrix pairs are constructed, taking various options
into account. If JOBB = 'B', the problem order is reduced from
2N+M to 2N (see [1]).
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Van Dooren, P.
A Generalized Eigenvalue Approach for Solving Riccati
Equations.
SIAM J. Sci. Stat. Comp., 2, pp. 121-135, 1981.
[2] Mehrmann, V.
The Autonomous Linear Quadratic Control Problem. Theory and
Numerical Solution.
Lect. Notes in Control and Information Sciences, vol. 163,
Springer-Verlag, Berlin, 1991.
[3] Sima, V.
Algorithms for Linear-Quadratic Optimization.
Pure and Applied Mathematics: A Series of Monographs and
Textbooks, vol. 200, Marcel Dekker, Inc., New York, 1996.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The algorithm is backward stable.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
None
</PRE>
<B>Program Data</B>
<PRE>
None
</PRE>
<B>Program Results</B>
<PRE>
None
</PRE>
<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>
|