File: SB03OS.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (186 lines) | stat: -rw-r--r-- 6,434 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
<HTML>
<HEAD><TITLE>SB03OS - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="SB03OS">SB03OS</A></H2>
<H3>
Solving (for Cholesky factor) stable continuous- or discrete-time complex Lyapunov equations, with matrices S and R triangular
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>                        H
  To solve for X = op(U) *op(U) either the stable non-negative
  definite continuous-time Lyapunov equation
          H                     2      H
     op(S) *X + X*op(S) = -scale *op(R) *op(R),                  (1)

  or the convergent non-negative definite discrete-time Lyapunov
  equation
          H                     2      H
     op(S) *X*op(S) - X = -scale *op(R) *op(R),                  (2)

  where op(K) = K or K**H (i.e., the conjugate transpose of the
  matrix K), S and R are complex N-by-N upper triangular matrices,
  and scale is an output scale factor, set less than or equal to 1
  to avoid overflow in X. The diagonal elements of the matrix R must
  be real non-negative.

  In the case of equation (1) the matrix S must be stable (that is,
  all the eigenvalues of S must have negative real parts), and for
  equation (2) the matrix S must be convergent (that is, all the
  eigenvalues of S must lie inside the unit circle).

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE SB03OS( DISCR, LTRANS, N, S, LDS, R, LDR, SCALE, DWORK,
     $                   ZWORK, INFO )
C     .. Scalar Arguments ..
      DOUBLE PRECISION  SCALE
      INTEGER           INFO, LDR, LDS, N
      LOGICAL           DISCR, LTRANS
C     .. Array Arguments ..
      COMPLEX*16        R(LDR,*), S(LDS,*), ZWORK(*)
      DOUBLE PRECISION  DWORK(*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  DISCR   LOGICAL
          Specifies the type of Lyapunov equation to be solved as
          follows:
          = .TRUE. :  Equation (2), discrete-time case;
          = .FALSE.:  Equation (1), continuous-time case.

  LTRANS  LOGICAL
          Specifies the form of op(K) to be used, as follows:
          = .FALSE.:  op(K) = K    (No transpose);
          = .TRUE. :  op(K) = K**H (Conjugate transpose).

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the matrices S and R.  N &gt;= 0.

  S       (input) COMPLEX*16 array of dimension (LDS,N)
          The leading N-by-N upper triangular part of this array
          must contain the upper triangular matrix.
          The elements below the upper triangular part of the array
          S are not referenced.

  LDS     INTEGER
          The leading dimension of array S.  LDS &gt;= MAX(1,N).

  R       (input/output) COMPLEX*16 array of dimension (LDR,N)
          On entry, the leading N-by-N upper triangular part of this
          array must contain the upper triangular matrix R, with
          real non-negative entries on its main diagonal.
          On exit, the leading N-by-N upper triangular part of this
          array contains the upper triangular matrix U, with real
          non-negative entries on its main diagonal.
          The strictly lower triangle of R is not referenced.

  LDR     INTEGER
          The leading dimension of array R.  LDR &gt;= MAX(1,N).

  SCALE   (output) DOUBLE PRECISION
          The scale factor, scale, set less than or equal to 1 to
          prevent the solution overflowing.

</PRE>
<B>Workspace</B>
<PRE>
  DWORK   DOUBLE PRECISION array, dimension (N-1)

  ZWORK   COMPLEX*16 array, dimension (2*N-2)

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = 3:  if the matrix S is not stable (that is, one or more
                of the eigenvalues of S has a non-negative real
                part), if DISCR = .FALSE., or not convergent (that
                is, one or more of the eigenvalues of S lies outside
                the unit circle), if DISCR = .TRUE..

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The method used by the routine is based on a variant of the
  Bartels and Stewart backward substitution method [1], that finds
  the Cholesky factor op(U) directly without first finding X and
  without the need to form the normal matrix op(R)'*op(R) [2].

  The continuous-time Lyapunov equation in the canonical form
         H      H              H                     2      H
    op(S) *op(U) *op(U) + op(U) *op(U)*op(S) = -scale *op(R) *op(R),

  or the discrete-time Lyapunov equation in the canonical form
         H      H                    H               2      H
    op(S) *op(U) *op(U)*op(S) - op(U) *op(U) = -scale *op(R) *op(R),

  where U and R are upper triangular, is solved for U.

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Bartels, R.H. and Stewart, G.W.
      Solution of the matrix equation  A'X + XB = C.
      Comm. A.C.M., 15, pp. 820-826, 1972.

  [2] Hammarling, S.J.
      Numerical solution of the stable, non-negative definite
      Lyapunov equation.
      IMA J. Num. Anal., 2, pp. 303-325, 1982.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>                            3
  The algorithm requires 0(N ) operations and is backward stable.

</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  The Lyapunov equation may be very ill-conditioned. In particular
  if S is only just stable (or convergent) then the Lyapunov
  equation will be ill-conditioned. "Large" elements in U relative
  to those of S and R, or a "small" value for scale, is a symptom
  of ill-conditioning. A condition estimate can be computed using
  SLICOT Library routine SB03MD.

</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>