1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
|
<HTML>
<HEAD><TITLE>SB03UD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="SB03UD">SB03UD</A></H2>
<H3>
Solution of discrete-time Lyapunov equations and condition and error bounds estimation
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To solve the real discrete-time Lyapunov matrix equation
op(A)'*X*op(A) - X = scale*C,
estimate the conditioning, and compute an error bound on the
solution X, where op(A) = A or A' (A**T), the matrix A is N-by-N,
the right hand side C and the solution X are N-by-N symmetric
matrices (C = C', X = X'), and scale is an output scale factor,
set less than or equal to 1 to avoid overflow in X.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE SB03UD( JOB, FACT, TRANA, UPLO, LYAPUN, N, SCALE, A,
$ LDA, T, LDT, U, LDU, C, LDC, X, LDX, SEPD,
$ RCOND, FERR, WR, WI, IWORK, DWORK, LDWORK,
$ INFO )
C .. Scalar Arguments ..
CHARACTER FACT, JOB, LYAPUN, TRANA, UPLO
INTEGER INFO, LDA, LDC, LDT, LDU, LDWORK, LDX, N
DOUBLE PRECISION FERR, RCOND, SCALE, SEPD
C .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION A( LDA, * ), C( LDC, * ), DWORK( * ),
$ T( LDT, * ), U( LDU, * ), WI( * ), WR( * ),
$ X( LDX, * )
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
JOB CHARACTER*1
Specifies the computation to be performed, as follows:
= 'X': Compute the solution only;
= 'S': Compute the separation only;
= 'C': Compute the reciprocal condition number only;
= 'E': Compute the error bound only;
= 'A': Compute all: the solution, separation, reciprocal
condition number, and the error bound.
FACT CHARACTER*1
Specifies whether or not the real Schur factorization
of the matrix A is supplied on entry, as follows:
= 'F': On entry, T and U (if LYAPUN = 'O') contain the
factors from the real Schur factorization of the
matrix A;
= 'N': The Schur factorization of A will be computed
and the factors will be stored in T and U (if
LYAPUN = 'O').
TRANA CHARACTER*1
Specifies the form of op(A) to be used, as follows:
= 'N': op(A) = A (No transpose);
= 'T': op(A) = A**T (Transpose);
= 'C': op(A) = A**T (Conjugate transpose = Transpose).
UPLO CHARACTER*1
Specifies which part of the symmetric matrix C is to be
used, as follows:
= 'U': Upper triangular part;
= 'L': Lower triangular part.
LYAPUN CHARACTER*1
Specifies whether or not the original or "reduced"
Lyapunov equations should be solved, as follows:
= 'O': Solve the original Lyapunov equations, updating
the right-hand sides and solutions with the
matrix U, e.g., X <-- U'*X*U;
= 'R': Solve reduced Lyapunov equations only, without
updating the right-hand sides and solutions.
This means that a real Schur form T of A appears
in the equation, instead of A.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the matrices A, X, and C. N >= 0.
SCALE (input or output) DOUBLE PRECISION
If JOB = 'C' or JOB = 'E', SCALE is an input argument:
the scale factor, set by a Lyapunov solver.
0 <= SCALE <= 1.
If JOB = 'X' or JOB = 'A', SCALE is an output argument:
the scale factor, scale, set less than or equal to 1 to
prevent the solution overflowing.
If JOB = 'S', this argument is not used.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
If FACT = 'N' or (LYAPUN = 'O' and JOB <> 'X'), the
leading N-by-N part of this array must contain the
original matrix A.
If FACT = 'F' and (LYAPUN = 'R' or JOB = 'X'), A is
not referenced.
LDA INTEGER
The leading dimension of the array A.
LDA >= MAX(1,N), if FACT = 'N' or LYAPUN = 'O' and
JOB <> 'X';
LDA >= 1, otherwise.
T (input/output) DOUBLE PRECISION array, dimension
(LDT,N)
If FACT = 'F', then on entry the leading N-by-N upper
Hessenberg part of this array must contain the upper
quasi-triangular matrix T in Schur canonical form from a
Schur factorization of A.
If FACT = 'N', then this array need not be set on input.
On exit, (if INFO = 0 or INFO = N+1, for FACT = 'N') the
leading N-by-N upper Hessenberg part of this array
contains the upper quasi-triangular matrix T in Schur
canonical form from a Schur factorization of A.
The contents of array T is not modified if FACT = 'F'.
LDT INTEGER
The leading dimension of the array T. LDT >= MAX(1,N).
U (input or output) DOUBLE PRECISION array, dimension
(LDU,N)
If LYAPUN = 'O' and FACT = 'F', then U is an input
argument and on entry, the leading N-by-N part of this
array must contain the orthogonal matrix U from a real
Schur factorization of A.
If LYAPUN = 'O' and FACT = 'N', then U is an output
argument and on exit, if INFO = 0 or INFO = N+1, it
contains the orthogonal N-by-N matrix from a real Schur
factorization of A.
If LYAPUN = 'R', the array U is not referenced.
LDU INTEGER
The leading dimension of the array U.
LDU >= 1, if LYAPUN = 'R';
LDU >= MAX(1,N), if LYAPUN = 'O'.
C (input) DOUBLE PRECISION array, dimension (LDC,N)
If JOB <> 'S' and UPLO = 'U', the leading N-by-N upper
triangular part of this array must contain the upper
triangular part of the matrix C of the original Lyapunov
equation (with matrix A), if LYAPUN = 'O', or of the
reduced Lyapunov equation (with matrix T), if
LYAPUN = 'R'.
If JOB <> 'S' and UPLO = 'L', the leading N-by-N lower
triangular part of this array must contain the lower
triangular part of the matrix C of the original Lyapunov
equation (with matrix A), if LYAPUN = 'O', or of the
reduced Lyapunov equation (with matrix T), if
LYAPUN = 'R'.
The remaining strictly triangular part of this array is
used as workspace.
If JOB = 'X', then this array may be identified with X
in the call of this routine.
If JOB = 'S', the array C is not referenced.
LDC INTEGER
The leading dimension of the array C.
LDC >= 1, if JOB = 'S';
LDC >= MAX(1,N), otherwise.
X (input or output) DOUBLE PRECISION array, dimension
(LDX,N)
If JOB = 'C' or 'E', then X is an input argument and on
entry, the leading N-by-N part of this array must contain
the symmetric solution matrix X of the original Lyapunov
equation (with matrix A), if LYAPUN = 'O', or of the
reduced Lyapunov equation (with matrix T), if
LYAPUN = 'R'.
If JOB = 'X' or 'A', then X is an output argument and on
exit, if INFO = 0 or INFO = N+1, the leading N-by-N part
of this array contains the symmetric solution matrix X of
of the original Lyapunov equation (with matrix A), if
LYAPUN = 'O', or of the reduced Lyapunov equation (with
matrix T), if LYAPUN = 'R'.
If JOB = 'S', the array X is not referenced.
LDX INTEGER
The leading dimension of the array X.
LDX >= 1, if JOB = 'S';
LDX >= MAX(1,N), otherwise.
SEPD (output) DOUBLE PRECISION
If JOB = 'S' or JOB = 'C' or JOB = 'A', and INFO = 0 or
INFO = N+1, SEPD contains the estimated separation of the
matrices op(A) and op(A)', sepd(op(A),op(A)').
If N = 0, or X = 0, or JOB = 'X' or JOB = 'E', SEPD is not
referenced.
RCOND (output) DOUBLE PRECISION
If JOB = 'C' or JOB = 'A', an estimate of the reciprocal
condition number of the continuous-time Lyapunov equation.
If N = 0 or X = 0, RCOND is set to 1 or 0, respectively.
If JOB = 'X' or JOB = 'S' or JOB = 'E', RCOND is not
referenced.
FERR (output) DOUBLE PRECISION
If JOB = 'E' or JOB = 'A', and INFO = 0 or INFO = N+1,
FERR contains an estimated forward error bound for the
solution X. If XTRUE is the true solution, FERR bounds the
relative error in the computed solution, measured in the
Frobenius norm: norm(X - XTRUE)/norm(XTRUE).
If N = 0 or X = 0, FERR is set to 0.
If JOB = 'X' or JOB = 'S' or JOB = 'C', FERR is not
referenced.
WR (output) DOUBLE PRECISION array, dimension (N)
WI (output) DOUBLE PRECISION array, dimension (N)
If FACT = 'N', and INFO = 0 or INFO = N+1, WR and WI
contain the real and imaginary parts, respectively, of the
eigenvalues of A.
If FACT = 'F', WR and WI are not referenced.
</PRE>
<B>Workspace</B>
<PRE>
IWORK INTEGER array, dimension (N*N)
This array is not referenced if JOB = 'X'.
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0 or INFO = N+1, DWORK(1) returns the
optimal value of LDWORK.
LDWORK INTEGER
The length of the array DWORK.
If JOB = 'X', then
LDWORK >= MAX(1,N*N,2*N), if FACT = 'F';
LDWORK >= MAX(1,N*N,3*N), if FACT = 'N'.
If JOB = 'S', then
LDWORK >= MAX(3,2*N*N).
If JOB = 'C', then
LDWORK >= MAX(3,2*N*N) + N*N.
If JOB = 'E', or JOB = 'A', then
LDWORK >= MAX(3,2*N*N) + N*N + 2*N.
For optimum performance LDWORK should sometimes be larger.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
> 0: if INFO = i, i <= N, the QR algorithm failed to
complete the reduction to Schur canonical form (see
LAPACK Library routine DGEES); on exit, the matrix
T(i+1:N,i+1:N) contains the partially converged
Schur form, and the elements i+1:n of WR and WI
contain the real and imaginary parts, respectively,
of the converged eigenvalues; this error is unlikely
to appear;
= N+1: if the matrix T has almost reciprocal eigenvalues;
perturbed values were used to solve Lyapunov
equations, but the matrix T, if given (for
FACT = 'F'), is unchanged.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
After reducing matrix A to real Schur canonical form (if needed),
a discrete-time version of the Bartels-Stewart algorithm is used.
A set of equivalent linear algebraic systems of equations of order
at most four are formed and solved using Gaussian elimination with
complete pivoting.
The condition number of the discrete-time Lyapunov equation is
estimated as
cond = (norm(Theta)*norm(A) + norm(inv(Omega))*norm(C))/norm(X),
where Omega and Theta are linear operators defined by
Omega(W) = op(A)'*W*op(A) - W,
Theta(W) = inv(Omega(op(W)'*X*op(A) + op(A)'*X*op(W))).
The routine estimates the quantities
sepd(op(A),op(A)') = 1 / norm(inv(Omega))
and norm(Theta) using 1-norm condition estimators.
The forward error bound is estimated using a practical error bound
similar to the one proposed in [3].
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Barraud, A.Y. T
A numerical algorithm to solve A XA - X = Q.
IEEE Trans. Auto. Contr., AC-22, pp. 883-885, 1977.
[2] Bartels, R.H. and Stewart, G.W. T
Solution of the matrix equation A X + XB = C.
Comm. A.C.M., 15, pp. 820-826, 1972.
[3] Higham, N.J.
Perturbation theory and backward error for AX-XB=C.
BIT, vol. 33, pp. 124-136, 1993.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE> 3
The algorithm requires 0(N ) operations.
The accuracy of the estimates obtained depends on the solution
accuracy and on the properties of the 1-norm estimator.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
The "separation" sepd of op(A) and op(A)' can also be defined as
sepd( op(A), op(A)' ) = sigma_min( T ),
where sigma_min(T) is the smallest singular value of the
N*N-by-N*N matrix
T = kprod( op(A)', op(A)' ) - I(N**2).
I(N**2) is an N*N-by-N*N identity matrix, and kprod denotes the
Kronecker product. The routine estimates sigma_min(T) by the
reciprocal of an estimate of the 1-norm of inverse(T). The true
reciprocal 1-norm of inverse(T) cannot differ from sigma_min(T) by
more than a factor of N.
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* SB03UD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX
PARAMETER ( NMAX = 20 )
INTEGER LDA, LDC, LDT, LDU, LDX
PARAMETER ( LDA = NMAX, LDC = NMAX, LDT = NMAX,
$ LDU = NMAX, LDX = NMAX )
INTEGER LIWORK
PARAMETER ( LIWORK = NMAX*NMAX )
INTEGER LDWORK
PARAMETER ( LDWORK = MAX( 3, 2*NMAX*NMAX ) +
$ NMAX*NMAX + 2*NMAX )
* .. Local Scalars ..
DOUBLE PRECISION FERR, RCOND, SCALE, SEPD
INTEGER I, INFO, J, N
CHARACTER*1 DICO, FACT, JOB, LYAPUN, TRANA, UPLO
* .. Local Arrays ..
INTEGER IWORK(LIWORK)
DOUBLE PRECISION A(LDA,NMAX), C(LDC,NMAX), DWORK(LDWORK),
$ T(LDT,NMAX), U(LDU,NMAX), X(LDX,NMAX)
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* .. External Subroutines ..
EXTERNAL SB03UD
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
DICO = 'D'
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, JOB, FACT, TRANA, UPLO, LYAPUN
IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99994 ) N
ELSE
IF ( LSAME( JOB, 'C' ) .OR. LSAME( JOB, 'E' ) )
$ READ ( NIN, FMT = * ) SCALE
IF ( LSAME( FACT, 'N' ) .OR. ( LSAME( LYAPUN, 'O' ) .AND.
$ .NOT.LSAME( JOB, 'X') ) )
$ READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
IF ( LSAME( FACT, 'F' ) ) THEN
READ ( NIN, FMT = * ) ( ( T(I,J), J = 1,N ), I = 1,N )
IF ( LSAME( LYAPUN, 'O' ) )
$ READ ( NIN, FMT = * ) ( ( U(I,J), J = 1,N ), I = 1,N )
END IF
IF ( .NOT.LSAME( JOB, 'S' ) )
$ READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,N )
IF ( LSAME( JOB, 'C' ) .OR. LSAME( JOB, 'E' ) )
$ READ ( NIN, FMT = * ) ( ( X(I,J), J = 1,N ), I = 1,N )
* Solve the discrete-time Lyapunov matrix equation and/or
* estimate the condition and error bound on the solution.
CALL SB03UD( JOB, FACT, TRANA, UPLO, LYAPUN, N, SCALE, A, LDA,
$ T, LDT, U, LDU, C, LDC, X, LDX, SEPD, RCOND, FERR,
$ DWORK(1), DWORK(N+1), IWORK, DWORK(2*N+1),
$ LDWORK-2*N, INFO )
*
IF ( INFO.EQ.0 ) THEN
IF ( LSAME( JOB, 'X' ) .OR. LSAME( JOB, 'A' ) ) THEN
WRITE ( NOUT, FMT = 99996 )
DO 10 I = 1, N
WRITE ( NOUT, FMT = 99995 ) ( X(I,J), J = 1,N )
10 CONTINUE
WRITE ( NOUT, FMT = 99993 ) SCALE
END IF
IF ( LSAME( JOB, 'S' ) .OR. LSAME( JOB, 'C' )
$ .OR. LSAME( JOB, 'A' ) )
$ WRITE ( NOUT, FMT = 99992 ) SEPD
IF ( LSAME( JOB, 'C' ) .OR. LSAME( JOB, 'A' ) )
$ WRITE ( NOUT, FMT = 99991 ) RCOND
IF ( LSAME( JOB, 'E' ) .OR. LSAME( JOB, 'A' ) )
$ WRITE ( NOUT, FMT = 99990 ) FERR
ELSE
WRITE ( NOUT, FMT = 99998 ) INFO
END IF
END IF
STOP
*
99999 FORMAT (' SB03UD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from SB03UD =',I2)
99996 FORMAT (' The solution matrix X is')
99995 FORMAT (20(1X,F8.4))
99994 FORMAT (/' N is out of range.',/' N = ',I5)
99993 FORMAT (/' Scaling factor = ',F8.4)
99992 FORMAT (/' Estimated separation = ',F8.4)
99991 FORMAT (/' Estimated reciprocal condition number = ',F8.4)
99990 FORMAT (/' Estimated error bound = ',F8.4)
END
</PRE>
<B>Program Data</B>
<PRE>
SB03UD EXAMPLE PROGRAM DATA
3 A N N U O
3.0 1.0 1.0
1.0 3.0 0.0
0.0 0.0 3.0
25.0 24.0 15.0
24.0 32.0 8.0
15.0 8.0 40.0
</PRE>
<B>Program Results</B>
<PRE>
SB03UD EXAMPLE PROGRAM RESULTS
The solution matrix X is
2.0000 1.0000 1.0000
1.0000 3.0000 0.0000
1.0000 0.0000 4.0000
Scaling factor = 1.0000
Estimated separation = 5.2302
Estimated reciprocal condition number = 0.1832
Estimated error bound = 0.0000
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|