File: SB04MU.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (133 lines) | stat: -rw-r--r-- 3,790 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
<HTML>
<HEAD><TITLE>SB04MU - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="SB04MU">SB04MU</A></H2>
<H3>
Constructing and solving a linear algebraic system whose coefficient matrix (stored compactly) has zeros below the second subdiagonal
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To construct and solve a linear algebraic system of order 2*M
  whose coefficient matrix has zeros below the second subdiagonal.
  Such systems appear when solving continuous-time Sylvester
  equations using the Hessenberg-Schur method.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE SB04MU( N, M, IND, A, LDA, B, LDB, C, LDC, D, IPR,
     $                   INFO )
C     .. Scalar Arguments ..
      INTEGER           INFO, IND, LDA, LDB, LDC, M, N
C     .. Array Arguments ..
      INTEGER           IPR(*)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), D(*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the matrix B.  N &gt;= 0.

  M       (input) INTEGER
          The order of the matrix A.  M &gt;= 0.

  IND     (input) INTEGER
          IND and IND - 1 specify the indices of the columns in C
          to be computed.  IND &gt; 1.

  A       (input) DOUBLE PRECISION array, dimension (LDA,M)
          The leading M-by-M part of this array must contain an
          upper Hessenberg matrix.

  LDA     INTEGER
          The leading dimension of array A.  LDA &gt;= MAX(1,M).

  B       (input) DOUBLE PRECISION array, dimension (LDB,N)
          The leading N-by-N part of this array must contain a
          matrix in real Schur form.

  LDB     INTEGER
          The leading dimension of array B.  LDB &gt;= MAX(1,N).

  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
          On entry, the leading M-by-N part of this array must
          contain the coefficient matrix C of the equation.
          On exit, the leading M-by-N part of this array contains
          the matrix C with columns IND-1 and IND updated.

  LDC     INTEGER
          The leading dimension of array C.  LDC &gt;= MAX(1,M).

</PRE>
<B>Workspace</B>
<PRE>
  D       DOUBLE PRECISION array, dimension (2*M*M+7*M)

  IPR     INTEGER array, dimension (4*M)

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &gt; 0:  if INFO = IND, a singular matrix was encountered.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  A special linear algebraic system of order 2*M, whose coefficient
  matrix has zeros below the second subdiagonal is constructed and
  solved. The coefficient matrix is stored compactly, row-wise.

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Golub, G.H., Nash, S. and Van Loan, C.F.
      A Hessenberg-Schur method for the problem AX + XB = C.
      IEEE Trans. Auto. Contr., AC-24, pp. 909-913, 1979.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  None.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>