1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
|
<HTML>
<HEAD><TITLE>SB08ED - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="SB08ED">SB08ED</A></H2>
<H3>
Left coprime factorization with prescribed stability degree
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To construct, for a given system G = (A,B,C,D), an output
injection matrix H and an orthogonal transformation matrix Z, such
that the systems
Q = (Z'*(A+H*C)*Z, Z'*(B+H*D), C*Z, D)
and
R = (Z'*(A+H*C)*Z, Z'*H, C*Z, I)
provide a stable left coprime factorization of G in the form
-1
G = R * Q,
where G, Q and R are the corresponding transfer-function matrices.
The resulting state dynamics matrix of the systems Q and R has
eigenvalues lying inside a given stability domain.
The Z matrix is not explicitly computed.
Note: If the given state-space representation is not detectable,
the undetectable part of the original system is automatically
deflated and the order of the systems Q and R is accordingly
reduced.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE SB08ED( DICO, N, M, P, ALPHA, A, LDA, B, LDB, C, LDC,
$ D, LDD, NQ, NR, BR, LDBR, DR, LDDR, TOL, DWORK,
$ LDWORK, IWARN, INFO )
C .. Scalar Arguments ..
CHARACTER DICO
INTEGER INFO, IWARN, LDA, LDB, LDBR, LDC, LDD, LDDR,
$ LDWORK, M, N, NQ, NR, P
DOUBLE PRECISION TOL
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), ALPHA(*), B(LDB,*), BR(LDBR,*),
$ C(LDC,*), D(LDD,*), DR(LDDR,*), DWORK(*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
DICO CHARACTER*1
Specifies the type of the original system as follows:
= 'C': continuous-time system;
= 'D': discrete-time system.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The dimension of the state vector, i.e. the order of the
matrix A, and also the number of rows of the matrices B
and BR, and the number of columns of the matrix C.
N >= 0.
M (input) INTEGER
The dimension of input vector, i.e. the number of columns
of the matrices B and D. M >= 0.
P (input) INTEGER
The dimension of output vector, i.e. the number of rows
of the matrices C, D and DR, and the number of columns of
the matrices BR and DR. P >= 0.
ALPHA (input) DOUBLE PRECISION array, dimension (2)
ALPHA(1) contains the desired stability degree to be
assigned for the eigenvalues of A+H*C, and ALPHA(2)
the stability margin. The eigenvalues outside the
ALPHA(2)-stability region will be assigned to have the
real parts equal to ALPHA(1) < 0 and unmodified
imaginary parts for a continuous-time system
(DICO = 'C'), or moduli equal to 0 <= ALPHA(2) < 1
for a discrete-time system (DICO = 'D').
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading N-by-N part of this array must
contain the state dynamics matrix A.
On exit, the leading NQ-by-NQ part of this array contains
the leading NQ-by-NQ part of the matrix Z'*(A+H*C)*Z, the
state dynamics matrix of the numerator factor Q, in a
real Schur form. The leading NR-by-NR part of this matrix
represents the state dynamics matrix of a minimal
realization of the denominator factor R.
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,N).
B (input/output) DOUBLE PRECISION array, dimension
(LDB,MAX(M,P))
On entry, the leading N-by-M part of this array must
contain the input/state matrix of the system.
On exit, the leading NQ-by-M part of this array contains
the leading NQ-by-M part of the matrix Z'*(B+H*D), the
input/state matrix of the numerator factor Q.
The remaining part of this array is needed as workspace.
LDB INTEGER
The leading dimension of array B. LDB >= MAX(1,N).
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the leading P-by-N part of this array must
contain the state/output matrix of the system.
On exit, the leading P-by-NQ part of this array contains
the leading P-by-NQ part of the matrix C*Z, the
state/output matrix of the numerator factor Q.
The first NR columns of this array represent the
state/output matrix of a minimal realization of the
denominator factor R.
The remaining part of this array is needed as workspace.
LDC INTEGER
The leading dimension of array C.
LDC >= MAX(1,M,P), if N > 0.
LDC >= 1, if N = 0.
D (input) DOUBLE PRECISION array, dimension (LDD,MAX(M,P))
The leading P-by-M part of this array must contain the
input/output matrix. D represents also the input/output
matrix of the numerator factor Q.
This array is modified internally, but restored on exit.
The remaining part of this array is needed as workspace.
LDD INTEGER
The leading dimension of array D. LDD >= MAX(1,M,P).
NQ (output) INTEGER
The order of the resulting factors Q and R.
Generally, NQ = N - NS, where NS is the number of
unobservable eigenvalues outside the stability region.
NR (output) INTEGER
The order of the minimal realization of the factor R.
Generally, NR is the number of observable eigenvalues
of A outside the stability region (the number of modified
eigenvalues).
BR (output) DOUBLE PRECISION array, dimension (LDBR,P)
The leading NQ-by-P part of this array contains the
leading NQ-by-P part of the output injection matrix
Z'*H, which moves the eigenvalues of A lying outside
the ALPHA-stable region to values on the ALPHA-stability
boundary. The first NR rows of this matrix form the
input/state matrix of a minimal realization of the
denominator factor R.
LDBR INTEGER
The leading dimension of array BR. LDBR >= MAX(1,N).
DR (output) DOUBLE PRECISION array, dimension (LDDR,P)
The leading P-by-P part of this array contains an
identity matrix representing the input/output matrix
of the denominator factor R.
LDDR INTEGER
The leading dimension of array DR. LDDR >= MAX(1,P).
</PRE>
<B>Tolerances</B>
<PRE>
TOL DOUBLE PRECISION
The absolute tolerance level below which the elements of
C are considered zero (used for observability tests).
If the user sets TOL <= 0, then an implicitly computed,
default tolerance, defined by TOLDEF = N*EPS*NORM(C),
is used instead, where EPS is the machine precision
(see LAPACK Library routine DLAMCH) and NORM(C) denotes
the infinity-norm of C.
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) returns the optimal value
of LDWORK.
LDWORK INTEGER
The dimension of working array DWORK.
LDWORK >= MAX( 1, N*P + MAX( N*(N+5), 5*P, 4*M ) ).
For optimum performance LDWORK should be larger.
</PRE>
<B>Warning Indicator</B>
<PRE>
IWARN INTEGER
= 0: no warning;
= K: K violations of the numerical stability condition
NORM(H) <= 10*NORM(A)/NORM(C) occured during the
assignment of eigenvalues.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: the reduction of A to a real Schur form failed;
= 2: a failure was detected during the ordering of the
real Schur form of A, or in the iterative process
for reordering the eigenvalues of Z'*(A + H*C)*Z
along the diagonal.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The subroutine uses the right coprime factorization algorithm
of [1] applied to G'.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Varga A.
Coprime factors model reduction method based on
square-root balancing-free techniques.
System Analysis, Modelling and Simulation,
vol. 11, pp. 303-311, 1993.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE> 3
The algorithm requires no more than 14N floating point
operations.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* SB08ED EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX, MMAX, PMAX
PARAMETER ( NMAX = 20, MMAX = 20, PMAX = 20 )
INTEGER MPMAX
PARAMETER ( MPMAX = MAX( MMAX, PMAX ) )
INTEGER LDA, LDB, LDBR, LDC, LDD, LDDR
PARAMETER ( LDA = NMAX, LDB = NMAX, LDC = MPMAX,
$ LDD = MPMAX, LDBR = NMAX, LDDR = PMAX )
INTEGER LDWORK
PARAMETER ( LDWORK = NMAX*PMAX + MAX( NMAX*( NMAX + 5 ),
$ 5*PMAX, 4*MMAX ) )
* .. Local Scalars ..
DOUBLE PRECISION TOL
INTEGER I, INFO, IWARN, J, M, N, NQ, NR, P
CHARACTER*1 DICO
* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), ALPHA(2), B(LDB,MPMAX),
$ BR(LDBR,PMAX), C(LDC,NMAX), D(LDD,MPMAX),
$ DR(LDDR,PMAX), DWORK(LDWORK)
* .. External Subroutines ..
EXTERNAL SB08ED
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, M, P, ALPHA(1), TOL, DICO
ALPHA(2) = ALPHA(1)
IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99990 ) N
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1, N ), I = 1, N )
IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99989 ) M
ELSE
READ ( NIN, FMT = * ) ( ( B(I,J), J = 1, M ), I = 1, N )
IF ( P.LT.0 .OR. P.GT.PMAX ) THEN
WRITE ( NOUT, FMT = 99988 ) P
ELSE
READ ( NIN, FMT = * ) ( ( C(I,J), J = 1, N ), I = 1, P )
READ ( NIN, FMT = * ) ( ( D(I,J), J = 1, M ), I = 1, P )
* Find a LCF for (A,B,C,D).
CALL SB08ED( DICO, N, M, P, ALPHA, A, LDA, B, LDB, C,
$ LDC, D, LDD, NQ, NR, BR, LDBR, DR, LDDR,
$ TOL, DWORK, LDWORK, IWARN, INFO )
*
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
IF( NQ.GT.0 ) WRITE ( NOUT, FMT = 99996 )
DO 20 I = 1, NQ
WRITE ( NOUT, FMT = 99995 ) ( A(I,J), J = 1, NQ )
20 CONTINUE
IF( NQ.GT.0 ) WRITE ( NOUT, FMT = 99993 )
DO 40 I = 1, NQ
WRITE ( NOUT, FMT = 99995 ) ( B(I,J), J = 1, M )
40 CONTINUE
IF( NQ.GT.0 ) WRITE ( NOUT, FMT = 99992 )
DO 60 I = 1, P
WRITE ( NOUT, FMT = 99995 ) ( C(I,J), J = 1, NQ )
60 CONTINUE
WRITE ( NOUT, FMT = 99991 )
DO 70 I = 1, P
WRITE ( NOUT, FMT = 99995 ) ( D(I,J), J = 1, M )
70 CONTINUE
IF( NR.GT.0 ) WRITE ( NOUT, FMT = 99986 )
DO 80 I = 1, NR
WRITE ( NOUT, FMT = 99995 )
$ ( A(I,J), J = 1, NR )
80 CONTINUE
IF( NR.GT.0 ) WRITE ( NOUT, FMT = 99985 )
DO 90 I = 1, NR
WRITE ( NOUT, FMT = 99995 ) ( BR(I,J), J = 1, P )
90 CONTINUE
IF( NR.GT.0 ) WRITE ( NOUT, FMT = 99984 )
DO 100 I = 1, P
WRITE ( NOUT, FMT = 99995 )
$ ( C(I,J), J = 1, NR )
100 CONTINUE
WRITE ( NOUT, FMT = 99983 )
DO 110 I = 1, P
WRITE ( NOUT, FMT = 99995 ) ( DR(I,J), J = 1, P )
110 CONTINUE
END IF
END IF
END IF
END IF
STOP
*
99999 FORMAT (' SB08ED EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from SB08ED = ',I2)
99996 FORMAT (/' The numerator state dynamics matrix AQ is ')
99995 FORMAT (20(1X,F8.4))
99993 FORMAT (/' The numerator input/state matrix BQ is ')
99992 FORMAT (/' The numerator state/output matrix CQ is ')
99991 FORMAT (/' The numerator input/output matrix DQ is ')
99990 FORMAT (/' N is out of range.',/' N = ',I5)
99989 FORMAT (/' M is out of range.',/' M = ',I5)
99988 FORMAT (/' P is out of range.',/' P = ',I5)
99986 FORMAT (/' The denominator state dynamics matrix AR is ')
99985 FORMAT (/' The denominator input/state matrix BR is ')
99984 FORMAT (/' The denominator state/output matrix CR is ')
99983 FORMAT (/' The denominator input/output matrix DR is ')
END
</PRE>
<B>Program Data</B>
<PRE>
SB08ED EXAMPLE PROGRAM DATA (Continuous system)
7 2 3 -1.0 1.E-10 C
-0.04165 0.0000 4.9200 0.4920 0.0000 0.0000 0.0000
-5.2100 -12.500 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 3.3300 -3.3300 0.0000 0.0000 0.0000 0.0000
0.5450 0.0000 0.0000 0.0000 0.0545 0.0000 0.0000
0.0000 0.0000 0.0000 -0.49200 0.004165 0.0000 4.9200
0.0000 0.0000 0.0000 0.0000 0.5210 -12.500 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 3.3300 -3.3300
0.0000 0.0000
12.500 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 12.500
0.0000 0.0000
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
</PRE>
<B>Program Results</B>
<PRE>
SB08ED EXAMPLE PROGRAM RESULTS
The numerator state dynamics matrix AQ is
-1.0000 0.0526 -0.1408 -0.3060 0.4199 0.2408 1.7274
-0.4463 -1.0000 2.0067 4.3895 0.0062 0.1813 0.0895
0.0000 0.0000 -12.4245 3.5463 -0.0057 0.0254 -0.0053
0.0000 0.0000 0.0000 -3.5957 -0.0153 -0.0290 -0.0616
0.0000 0.0000 0.0000 0.0000 -13.1627 -1.9835 -3.6182
0.0000 0.0000 0.0000 0.0000 0.0000 -1.4178 5.6218
0.0000 0.0000 0.0000 0.0000 0.0000 -0.8374 -1.4178
The numerator input/state matrix BQ is
-1.1544 -0.0159
-0.0631 0.5122
0.0056 -11.6989
0.0490 4.3728
11.7198 -0.0038
-2.8173 0.0308
3.1018 -0.0009
The numerator state/output matrix CQ is
0.2238 0.0132 -0.0006 -0.0083 0.1279 0.8797 0.3994
0.9639 0.0643 -0.0007 -0.0041 0.0305 -0.2562 0.0122
-0.0660 0.9962 0.0248 -0.0506 0.0000 0.0022 -0.0017
The numerator input/output matrix DQ is
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
The denominator state dynamics matrix AR is
-1.0000 0.0526
-0.4463 -1.0000
The denominator input/state matrix BR is
-0.2623 -1.1297 0.0764
-0.0155 -0.0752 -1.1676
The denominator state/output matrix CR is
0.2238 0.0132
0.9639 0.0643
-0.0660 0.9962
The denominator input/output matrix DR is
1.0000 0.0000 0.0000
0.0000 1.0000 0.0000
0.0000 0.0000 1.0000
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|