File: SB08GD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (181 lines) | stat: -rw-r--r-- 5,887 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
<HTML>
<HEAD><TITLE>SB08GD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="SB08GD">SB08GD</A></H2>
<H3>
State-space representation of a left coprime factorization
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To construct the state-space representation for the system
  G = (A,B,C,D) from the factors Q = (AQR,BQ,CQR,DQ) and
  R = (AQR,BR,CQR,DR) of its left coprime factorization
                -1
           G = R  * Q,

  where G, Q and R are the corresponding transfer-function matrices.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE SB08GD( N, M, P, A, LDA, B, LDB, C, LDC, D, LDD, BR,
     $                   LDBR, DR, LDDR, IWORK, DWORK, INFO )
C     .. Scalar Arguments ..
      INTEGER           INFO, LDA, LDB, LDBR, LDC, LDD, LDDR, M, N, P
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), BR(LDBR,*), C(LDC,*),
     $                  D(LDD,*), DR(LDDR,*), DWORK(*)
      INTEGER           IWORK(*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the matrix A. Also the number of rows of the
          matrices B and BR and the number of columns of the matrix
          C. N represents the order of the systems Q and R.  N &gt;= 0.

  M       (input) INTEGER
          The dimension of input vector, i.e. the number of columns
          of the matrices B and D.  M &gt;= 0.

  P       (input) INTEGER
          The dimension of output vector, i.e. the number of rows of
          the matrices C, D and DR and the number of columns of the
          matrices BR and DR.  P &gt;= 0.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N part of this array must
          contain the state dynamics matrix AQR of the systems
          Q and R.
          On exit, the leading N-by-N part of this array contains
          the state dynamics matrix of the system G.

  LDA     INTEGER
          The leading dimension of array A.  LDA &gt;= MAX(1,N).

  B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
          On entry, the leading N-by-M part of this array must
          contain the input/state matrix BQ of the system Q.
          On exit, the leading N-by-M part of this array contains
          the input/state matrix of the system G.

  LDB     INTEGER
          The leading dimension of array B.  LDB &gt;= MAX(1,N).

  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
          On entry, the leading P-by-N part of this array must
          contain the state/output matrix CQR of the systems
          Q and R.
          On exit, the leading P-by-N part of this array contains
          the state/output matrix of the system G.

  LDC     INTEGER
          The leading dimension of array C.  LDC &gt;= MAX(1,P).

  D       (input/output) DOUBLE PRECISION array, dimension (LDD,M)
          On entry, the leading P-by-M part of this array must
          contain the input/output matrix DQ of the system Q.
          On exit, the leading P-by-M part of this array contains
          the input/output matrix of the system G.

  LDD     INTEGER
          The leading dimension of array D.  LDD &gt;= MAX(1,P).

  BR      (input) DOUBLE PRECISION array, dimension (LDBR,P)
          The leading N-by-P part of this array must contain the
          input/state matrix BR of the system R.

  LDBR    INTEGER
          The leading dimension of array BR.  LDBR &gt;= MAX(1,N).

  DR      (input/output) DOUBLE PRECISION array, dimension (LDDR,P)
          On entry, the leading P-by-P part of this array must
          contain the input/output matrix DR of the system R.
          On exit, the leading P-by-P part of this array contains
          the LU factorization of the matrix DR, as computed by
          LAPACK Library routine DGETRF.

  LDDR    INTEGER
          The leading dimension of array DR.  LDDR &gt;= MAX(1,P).

</PRE>
<B>Workspace</B>
<PRE>
  IWORK   INTEGER array, dimension (P)

  DWORK   DOUBLE PRECISION array, dimension (MAX(1,4*P))
          On exit, DWORK(1) contains an estimate of the reciprocal
          condition number of the matrix DR.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = 1:  the matrix DR is singular;
          = 2:  the matrix DR is numerically singular (warning);
                the calculations continued.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The subroutine computes the matrices of the state-space
  representation G = (A,B,C,D) by using the formulas:

                   -1              -1
  A = AQR - BR * DR  * CQR,  C = DR  * CQR,
                   -1              -1
  B = BQ  - BR * DR  * DQ,   D = DR  * DQ.

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Varga A.
      Coprime factors model reduction method based on
      square-root balancing-free techniques.
      System Analysis, Modelling and Simulation,
      vol. 11, pp. 303-311, 1993.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>