1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
<HTML>
<HEAD><TITLE>SB08GD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="SB08GD">SB08GD</A></H2>
<H3>
State-space representation of a left coprime factorization
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To construct the state-space representation for the system
G = (A,B,C,D) from the factors Q = (AQR,BQ,CQR,DQ) and
R = (AQR,BR,CQR,DR) of its left coprime factorization
-1
G = R * Q,
where G, Q and R are the corresponding transfer-function matrices.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE SB08GD( N, M, P, A, LDA, B, LDB, C, LDC, D, LDD, BR,
$ LDBR, DR, LDDR, IWORK, DWORK, INFO )
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LDBR, LDC, LDD, LDDR, M, N, P
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), BR(LDBR,*), C(LDC,*),
$ D(LDD,*), DR(LDDR,*), DWORK(*)
INTEGER IWORK(*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the matrix A. Also the number of rows of the
matrices B and BR and the number of columns of the matrix
C. N represents the order of the systems Q and R. N >= 0.
M (input) INTEGER
The dimension of input vector, i.e. the number of columns
of the matrices B and D. M >= 0.
P (input) INTEGER
The dimension of output vector, i.e. the number of rows of
the matrices C, D and DR and the number of columns of the
matrices BR and DR. P >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading N-by-N part of this array must
contain the state dynamics matrix AQR of the systems
Q and R.
On exit, the leading N-by-N part of this array contains
the state dynamics matrix of the system G.
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
On entry, the leading N-by-M part of this array must
contain the input/state matrix BQ of the system Q.
On exit, the leading N-by-M part of this array contains
the input/state matrix of the system G.
LDB INTEGER
The leading dimension of array B. LDB >= MAX(1,N).
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the leading P-by-N part of this array must
contain the state/output matrix CQR of the systems
Q and R.
On exit, the leading P-by-N part of this array contains
the state/output matrix of the system G.
LDC INTEGER
The leading dimension of array C. LDC >= MAX(1,P).
D (input/output) DOUBLE PRECISION array, dimension (LDD,M)
On entry, the leading P-by-M part of this array must
contain the input/output matrix DQ of the system Q.
On exit, the leading P-by-M part of this array contains
the input/output matrix of the system G.
LDD INTEGER
The leading dimension of array D. LDD >= MAX(1,P).
BR (input) DOUBLE PRECISION array, dimension (LDBR,P)
The leading N-by-P part of this array must contain the
input/state matrix BR of the system R.
LDBR INTEGER
The leading dimension of array BR. LDBR >= MAX(1,N).
DR (input/output) DOUBLE PRECISION array, dimension (LDDR,P)
On entry, the leading P-by-P part of this array must
contain the input/output matrix DR of the system R.
On exit, the leading P-by-P part of this array contains
the LU factorization of the matrix DR, as computed by
LAPACK Library routine DGETRF.
LDDR INTEGER
The leading dimension of array DR. LDDR >= MAX(1,P).
</PRE>
<B>Workspace</B>
<PRE>
IWORK INTEGER array, dimension (P)
DWORK DOUBLE PRECISION array, dimension (MAX(1,4*P))
On exit, DWORK(1) contains an estimate of the reciprocal
condition number of the matrix DR.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: the matrix DR is singular;
= 2: the matrix DR is numerically singular (warning);
the calculations continued.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The subroutine computes the matrices of the state-space
representation G = (A,B,C,D) by using the formulas:
-1 -1
A = AQR - BR * DR * CQR, C = DR * CQR,
-1 -1
B = BQ - BR * DR * DQ, D = DR * DQ.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Varga A.
Coprime factors model reduction method based on
square-root balancing-free techniques.
System Analysis, Modelling and Simulation,
vol. 11, pp. 303-311, 1993.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
None
</PRE>
<B>Program Data</B>
<PRE>
None
</PRE>
<B>Program Results</B>
<PRE>
None
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|