1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
|
<HTML>
<HEAD><TITLE>SB10AD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="SB10AD">SB10AD</A></H2>
<H3>
H-infinity optimal controller using modified Glover's and Doyle's formulas (continuous-time)
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute the matrices of an H-infinity optimal n-state
controller
| AK | BK |
K = |----|----|,
| CK | DK |
using modified Glover's and Doyle's 1988 formulas, for the system
| A | B1 B2 | | A | B |
P = |----|---------| = |---|---|
| C1 | D11 D12 | | C | D |
| C2 | D21 D22 |
and for the estimated minimal possible value of gamma with respect
to GTOL, where B2 has as column size the number of control inputs
(NCON) and C2 has as row size the number of measurements (NMEAS)
being provided to the controller, and then to compute the matrices
of the closed-loop system
| AC | BC |
G = |----|----|,
| CC | DC |
if the stabilizing controller exists.
It is assumed that
(A1) (A,B2) is stabilizable and (C2,A) is detectable,
(A2) D12 is full column rank and D21 is full row rank,
(A3) | A-j*omega*I B2 | has full column rank for all omega,
| C1 D12 |
(A4) | A-j*omega*I B1 | has full row rank for all omega.
| C2 D21 |
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE SB10AD( JOB, N, M, NP, NCON, NMEAS, GAMMA, A, LDA,
$ B, LDB, C, LDC, D, LDD, AK, LDAK, BK, LDBK, CK,
$ LDCK, DK, LDDK, AC, LDAC, BC, LDBC, CC, LDCC,
$ DC, LDDC, RCOND, GTOL, ACTOL, IWORK, LIWORK,
$ DWORK, LDWORK, BWORK, LBWORK, INFO )
C .. Scalar Arguments ..
INTEGER INFO, JOB, LBWORK, LDA, LDAC, LDAK, LDB, LDBC,
$ LDBK, LDC, LDCC, LDCK, LDD, LDDC, LDDK, LDWORK,
$ LIWORK, M, N, NCON, NMEAS, NP
DOUBLE PRECISION ACTOL, GAMMA, GTOL
C .. Array Arguments ..
LOGICAL BWORK( * )
INTEGER IWORK( * )
DOUBLE PRECISION A( LDA, * ), AC( LDAC, * ), AK( LDAK, * ),
$ B( LDB, * ), BC( LDBC, * ), BK( LDBK, * ),
$ C( LDC, * ), CC( LDCC, * ), CK( LDCK, * ),
$ D( LDD, * ), DC( LDDC, * ), DK( LDDK, * ),
$ DWORK( * ), RCOND( 4 )
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
</PRE>
<B>Input/Output Parameters</B>
<PRE>
JOB (input) INTEGER
Indicates the strategy for reducing the GAMMA value, as
follows:
= 1: Use bisection method for decreasing GAMMA from GAMMA
to GAMMAMIN until the closed-loop system leaves
stability.
= 2: Scan from GAMMA to 0 trying to find the minimal GAMMA
for which the closed-loop system retains stability.
= 3: First bisection, then scanning.
= 4: Find suboptimal controller only.
N (input) INTEGER
The order of the system. N >= 0.
M (input) INTEGER
The column size of the matrix B. M >= 0.
NP (input) INTEGER
The row size of the matrix C. NP >= 0.
NCON (input) INTEGER
The number of control inputs (M2). M >= NCON >= 0,
NP-NMEAS >= NCON.
NMEAS (input) INTEGER
The number of measurements (NP2). NP >= NMEAS >= 0,
M-NCON >= NMEAS.
GAMMA (input/output) DOUBLE PRECISION
The initial value of gamma on input. It is assumed that
gamma is sufficiently large so that the controller is
admissible. GAMMA >= 0.
On output it contains the minimal estimated gamma.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The leading N-by-N part of this array must contain the
system state matrix A.
LDA INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input) DOUBLE PRECISION array, dimension (LDB,M)
The leading N-by-M part of this array must contain the
system input matrix B.
LDB INTEGER
The leading dimension of the array B. LDB >= max(1,N).
C (input) DOUBLE PRECISION array, dimension (LDC,N)
The leading NP-by-N part of this array must contain the
system output matrix C.
LDC INTEGER
The leading dimension of the array C. LDC >= max(1,NP).
D (input) DOUBLE PRECISION array, dimension (LDD,M)
The leading NP-by-M part of this array must contain the
system input/output matrix D.
LDD INTEGER
The leading dimension of the array D. LDD >= max(1,NP).
AK (output) DOUBLE PRECISION array, dimension (LDAK,N)
The leading N-by-N part of this array contains the
controller state matrix AK.
LDAK INTEGER
The leading dimension of the array AK. LDAK >= max(1,N).
BK (output) DOUBLE PRECISION array, dimension (LDBK,NMEAS)
The leading N-by-NMEAS part of this array contains the
controller input matrix BK.
LDBK INTEGER
The leading dimension of the array BK. LDBK >= max(1,N).
CK (output) DOUBLE PRECISION array, dimension (LDCK,N)
The leading NCON-by-N part of this array contains the
controller output matrix CK.
LDCK INTEGER
The leading dimension of the array CK.
LDCK >= max(1,NCON).
DK (output) DOUBLE PRECISION array, dimension (LDDK,NMEAS)
The leading NCON-by-NMEAS part of this array contains the
controller input/output matrix DK.
LDDK INTEGER
The leading dimension of the array DK.
LDDK >= max(1,NCON).
AC (output) DOUBLE PRECISION array, dimension (LDAC,2*N)
The leading 2*N-by-2*N part of this array contains the
closed-loop system state matrix AC.
LDAC INTEGER
The leading dimension of the array AC.
LDAC >= max(1,2*N).
BC (output) DOUBLE PRECISION array, dimension (LDBC,M-NCON)
The leading 2*N-by-(M-NCON) part of this array contains
the closed-loop system input matrix BC.
LDBC INTEGER
The leading dimension of the array BC.
LDBC >= max(1,2*N).
CC (output) DOUBLE PRECISION array, dimension (LDCC,2*N)
The leading (NP-NMEAS)-by-2*N part of this array contains
the closed-loop system output matrix CC.
LDCC INTEGER
The leading dimension of the array CC.
LDCC >= max(1,NP-NMEAS).
DC (output) DOUBLE PRECISION array, dimension (LDDC,M-NCON)
The leading (NP-NMEAS)-by-(M-NCON) part of this array
contains the closed-loop system input/output matrix DC.
LDDC INTEGER
The leading dimension of the array DC.
LDDC >= max(1,NP-NMEAS).
RCOND (output) DOUBLE PRECISION array, dimension (4)
For the last successful step:
RCOND(1) contains the reciprocal condition number of the
control transformation matrix;
RCOND(2) contains the reciprocal condition number of the
measurement transformation matrix;
RCOND(3) contains an estimate of the reciprocal condition
number of the X-Riccati equation;
RCOND(4) contains an estimate of the reciprocal condition
number of the Y-Riccati equation.
</PRE>
<B>Tolerances</B>
<PRE>
GTOL DOUBLE PRECISION
Tolerance used for controlling the accuracy of GAMMA
and its distance to the estimated minimal possible
value of GAMMA.
If GTOL <= 0, then a default value equal to sqrt(EPS)
is used, where EPS is the relative machine precision.
ACTOL DOUBLE PRECISION
Upper bound for the poles of the closed-loop system
used for determining if it is stable.
ACTOL <= 0 for stable systems.
</PRE>
<B>Workspace</B>
<PRE>
IWORK INTEGER array, dimension (LIWORK)
LIWORK INTEGER
The dimension of the array IWORK.
LIWORK >= max(2*max(N,M-NCON,NP-NMEAS,NCON,NMEAS),N*N)
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) contains the optimal
value of LDWORK.
LDWORK INTEGER
The dimension of the array DWORK.
LDWORK >= LW1 + max(1,LW2,LW3,LW4,LW5 + MAX(LW6,LW7)),
where
LW1 = N*M + NP*N + NP*M + M2*M2 + NP2*NP2;
LW2 = max( ( N + NP1 + 1 )*( N + M2 ) +
max( 3*( N + M2 ) + N + NP1, 5*( N + M2 ) ),
( N + NP2 )*( N + M1 + 1 ) +
max( 3*( N + NP2 ) + N + M1, 5*( N + NP2 ) ),
M2 + NP1*NP1 + max( NP1*max( N, M1 ),
3*M2 + NP1, 5*M2 ),
NP2 + M1*M1 + max( max( N, NP1 )*M1,
3*NP2 + M1, 5*NP2 ) );
LW3 = max( ND1*M1 + max( 4*min( ND1, M1 ) + max( ND1,M1 ),
6*min( ND1, M1 ) ),
NP1*ND2 + max( 4*min( NP1, ND2 ) +
max( NP1,ND2 ),
6*min( NP1, ND2 ) ) );
LW4 = 2*M*M + NP*NP + 2*M*N + M*NP + 2*N*NP;
LW5 = 2*N*N + M*N + N*NP;
LW6 = max( M*M + max( 2*M1, 3*N*N +
max( N*M, 10*N*N + 12*N + 5 ) ),
NP*NP + max( 2*NP1, 3*N*N +
max( N*NP, 10*N*N + 12*N + 5 ) ));
LW7 = M2*NP2 + NP2*NP2 + M2*M2 +
max( ND1*ND1 + max( 2*ND1, ( ND1 + ND2 )*NP2 ),
ND2*ND2 + max( 2*ND2, ND2*M2 ), 3*N,
N*( 2*NP2 + M2 ) +
max( 2*N*M2, M2*NP2 +
max( M2*M2 + 3*M2, NP2*( 2*NP2 +
M2 + max( NP2, N ) ) ) ) );
M1 = M - M2, NP1 = NP - NP2,
ND1 = NP1 - M2, ND2 = M1 - NP2.
For good performance, LDWORK must generally be larger.
BWORK LOGICAL array, dimension (LBWORK)
LBWORK INTEGER
The dimension of the array BWORK. LBWORK >= 2*N.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: if the matrix | A-j*omega*I B2 | had not full
| C1 D12 |
column rank in respect to the tolerance EPS;
= 2: if the matrix | A-j*omega*I B1 | had not full row
| C2 D21 |
rank in respect to the tolerance EPS;
= 3: if the matrix D12 had not full column rank in
respect to the tolerance SQRT(EPS);
= 4: if the matrix D21 had not full row rank in respect
to the tolerance SQRT(EPS);
= 5: if the singular value decomposition (SVD) algorithm
did not converge (when computing the SVD of one of
the matrices |A B2 |, |A B1 |, D12 or D21);
|C1 D12| |C2 D21|
= 6: if the controller is not admissible (too small value
of gamma);
= 7: if the X-Riccati equation was not solved
successfully (the controller is not admissible or
there are numerical difficulties);
= 8: if the Y-Riccati equation was not solved
successfully (the controller is not admissible or
there are numerical difficulties);
= 9: if the determinant of Im2 + Tu*D11HAT*Ty*D22 is
zero [3];
= 10: if there are numerical problems when estimating
singular values of D1111, D1112, D1111', D1121';
= 11: if the matrices Inp2 - D22*DK or Im2 - DK*D22
are singular to working precision;
= 12: if a stabilizing controller cannot be found.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The routine implements the Glover's and Doyle's 1988 formulas [1],
[2], modified to improve the efficiency as described in [3].
JOB = 1: It tries with a decreasing value of GAMMA, starting with
the given, and with the newly obtained controller estimates of the
closed-loop system. If it is stable, (i.e., max(eig(AC)) < ACTOL)
the iterations can be continued until the given tolerance between
GAMMA and the estimated GAMMAMIN is reached. Otherwise, in the
next step GAMMA is increased. The step in the all next iterations
is step = step/2. The closed-loop system is obtained by the
formulas given in [2].
JOB = 2: The same as for JOB = 1, but with non-varying step till
GAMMA = 0, step = max(0.1, GTOL).
JOB = 3: Combines the JOB = 1 and JOB = 2 cases for a quicker
procedure.
JOB = 4: Suboptimal controller for current GAMMA only.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Glover, K. and Doyle, J.C.
State-space formulae for all stabilizing controllers that
satisfy an Hinf norm bound and relations to risk sensitivity.
Systems and Control Letters, vol. 11, pp. 167-172, 1988.
[2] Balas, G.J., Doyle, J.C., Glover, K., Packard, A., and
Smith, R.
mu-Analysis and Synthesis Toolbox.
The MathWorks Inc., Natick, MA, 1995.
[3] Petkov, P.Hr., Gu, D.W., and Konstantinov, M.M.
Fortran 77 routines for Hinf and H2 design of continuous-time
linear control systems.
Rep. 98-14, Department of Engineering, Leicester University,
Leicester, U.K., 1998.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The accuracy of the result depends on the condition numbers of the
input and output transformations and on the condition numbers of
the two Riccati equations, as given by the values of RCOND(1),
RCOND(2), RCOND(3) and RCOND(4), respectively.
This approach by estimating the closed-loop system and checking
its poles seems to be reliable.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
None
</PRE>
<B>Program Data</B>
<PRE>
None
</PRE>
<B>Program Results</B>
<PRE>
None
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|