File: SB10AD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (404 lines) | stat: -rw-r--r-- 15,099 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
<HTML>
<HEAD><TITLE>SB10AD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="SB10AD">SB10AD</A></H2>
<H3>
H-infinity optimal controller using modified Glover's and Doyle's formulas (continuous-time)
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute the matrices of an H-infinity optimal n-state
  controller

           | AK | BK |
       K = |----|----|,
           | CK | DK |

  using modified Glover's and Doyle's 1988 formulas, for the system

           | A  | B1  B2  |   | A | B |
       P = |----|---------| = |---|---|
           | C1 | D11 D12 |   | C | D |
           | C2 | D21 D22 |

  and for the estimated minimal possible value of gamma with respect
  to GTOL, where B2 has as column size the number of control inputs
  (NCON) and C2 has as row size the number of measurements (NMEAS)
  being provided to the controller, and then to compute the matrices
  of the closed-loop system

           | AC | BC |
       G = |----|----|,
           | CC | DC |

  if the stabilizing controller exists.

  It is assumed that

  (A1) (A,B2) is stabilizable and (C2,A) is detectable,

  (A2) D12 is full column rank and D21 is full row rank,

  (A3) | A-j*omega*I  B2  | has full column rank for all omega,
       |    C1        D12 |

  (A4) | A-j*omega*I  B1  |  has full row rank for all omega.
       |    C2        D21 |

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE SB10AD( JOB, N, M, NP, NCON, NMEAS, GAMMA, A, LDA,
     $                   B, LDB, C, LDC, D, LDD, AK, LDAK, BK, LDBK, CK,
     $                   LDCK, DK, LDDK, AC, LDAC, BC, LDBC, CC, LDCC,
     $                   DC, LDDC, RCOND, GTOL, ACTOL, IWORK, LIWORK,
     $                   DWORK, LDWORK, BWORK, LBWORK, INFO )
C     .. Scalar Arguments ..
      INTEGER            INFO, JOB, LBWORK, LDA, LDAC, LDAK, LDB, LDBC,
     $                   LDBK, LDC, LDCC, LDCK, LDD, LDDC, LDDK, LDWORK,
     $                   LIWORK, M, N, NCON, NMEAS, NP
      DOUBLE PRECISION   ACTOL, GAMMA, GTOL
C     .. Array Arguments ..
      LOGICAL            BWORK( * )
      INTEGER            IWORK( * )
      DOUBLE PRECISION   A( LDA, * ), AC( LDAC, * ), AK( LDAK, * ),
     $                   B( LDB, * ), BC( LDBC, * ), BK( LDBK, * ),
     $                   C( LDC, * ), CC( LDCC, * ), CK( LDCK, * ),
     $                   D( LDD, * ), DC( LDDC, * ), DK( LDDK, * ),
     $                   DWORK( * ), RCOND( 4 )

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  JOB     (input) INTEGER
          Indicates the strategy for reducing the GAMMA value, as
          follows:
          = 1: Use bisection method for decreasing GAMMA from GAMMA
               to GAMMAMIN until the closed-loop system leaves
               stability.
          = 2: Scan from GAMMA to 0 trying to find the minimal GAMMA
               for which the closed-loop system retains stability.
          = 3: First bisection, then scanning.
          = 4: Find suboptimal controller only.

  N       (input) INTEGER
          The order of the system.  N &gt;= 0.

  M       (input) INTEGER
          The column size of the matrix B.  M &gt;= 0.

  NP      (input) INTEGER
          The row size of the matrix C.  NP &gt;= 0.

  NCON    (input) INTEGER
          The number of control inputs (M2).  M &gt;= NCON &gt;= 0,
          NP-NMEAS &gt;= NCON.

  NMEAS   (input) INTEGER
          The number of measurements (NP2).  NP &gt;= NMEAS &gt;= 0,
          M-NCON &gt;= NMEAS.

  GAMMA   (input/output) DOUBLE PRECISION
          The initial value of gamma on input. It is assumed that
          gamma is sufficiently large so that the controller is
          admissible. GAMMA &gt;= 0.
          On output it contains the minimal estimated gamma.

  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
          The leading N-by-N part of this array must contain the
          system state matrix A.

  LDA     INTEGER
          The leading dimension of the array A.  LDA &gt;= max(1,N).

  B       (input) DOUBLE PRECISION array, dimension (LDB,M)
          The leading N-by-M part of this array must contain the
          system input matrix B.

  LDB     INTEGER
          The leading dimension of the array B.  LDB &gt;= max(1,N).

  C       (input) DOUBLE PRECISION array, dimension (LDC,N)
          The leading NP-by-N part of this array must contain the
          system output matrix C.

  LDC     INTEGER
          The leading dimension of the array C.  LDC &gt;= max(1,NP).

  D       (input) DOUBLE PRECISION array, dimension (LDD,M)
          The leading NP-by-M part of this array must contain the
          system input/output matrix D.

  LDD     INTEGER
          The leading dimension of the array D.  LDD &gt;= max(1,NP).

  AK      (output) DOUBLE PRECISION array, dimension (LDAK,N)
          The leading N-by-N part of this array contains the
          controller state matrix AK.

  LDAK    INTEGER
          The leading dimension of the array AK.  LDAK &gt;= max(1,N).

  BK      (output) DOUBLE PRECISION array, dimension (LDBK,NMEAS)
          The leading N-by-NMEAS part of this array contains the
          controller input matrix BK.

  LDBK    INTEGER
          The leading dimension of the array BK.  LDBK &gt;= max(1,N).

  CK      (output) DOUBLE PRECISION array, dimension (LDCK,N)
          The leading NCON-by-N part of this array contains the
          controller output matrix CK.

  LDCK    INTEGER
          The leading dimension of the array CK.
          LDCK &gt;= max(1,NCON).

  DK      (output) DOUBLE PRECISION array, dimension (LDDK,NMEAS)
          The leading NCON-by-NMEAS part of this array contains the
          controller input/output matrix DK.

  LDDK    INTEGER
          The leading dimension of the array DK.
          LDDK &gt;= max(1,NCON).

  AC      (output) DOUBLE PRECISION array, dimension (LDAC,2*N)
          The leading 2*N-by-2*N part of this array contains the
          closed-loop system state matrix AC.

  LDAC    INTEGER
          The leading dimension of the array AC.
          LDAC &gt;= max(1,2*N).

  BC      (output) DOUBLE PRECISION array, dimension (LDBC,M-NCON)
          The leading 2*N-by-(M-NCON) part of this array contains
          the closed-loop system input matrix BC.

  LDBC    INTEGER
          The leading dimension of the array BC.
          LDBC &gt;= max(1,2*N).

  CC      (output) DOUBLE PRECISION array, dimension (LDCC,2*N)
          The leading (NP-NMEAS)-by-2*N part of this array contains
          the closed-loop system output matrix CC.

  LDCC    INTEGER
          The leading dimension of the array CC.
          LDCC &gt;= max(1,NP-NMEAS).

  DC      (output) DOUBLE PRECISION array, dimension (LDDC,M-NCON)
          The leading (NP-NMEAS)-by-(M-NCON) part of this array
          contains the closed-loop system input/output matrix DC.

  LDDC    INTEGER
          The leading dimension of the array DC.
          LDDC &gt;= max(1,NP-NMEAS).

  RCOND   (output) DOUBLE PRECISION array, dimension (4)
                   For the last successful step:
          RCOND(1) contains the reciprocal condition number of the
                   control transformation matrix;
          RCOND(2) contains the reciprocal condition number of the
                   measurement transformation matrix;
          RCOND(3) contains an estimate of the reciprocal condition
                   number of the X-Riccati equation;
          RCOND(4) contains an estimate of the reciprocal condition
                   number of the Y-Riccati equation.

</PRE>
<B>Tolerances</B>
<PRE>
  GTOL    DOUBLE PRECISION
          Tolerance used for controlling the accuracy of GAMMA
          and its distance to the estimated minimal possible
          value of GAMMA.
          If GTOL &lt;= 0, then a default value equal to sqrt(EPS)
          is used, where EPS is the relative machine precision.

  ACTOL   DOUBLE PRECISION
          Upper bound for the poles of the closed-loop system
          used for determining if it is stable.
          ACTOL &lt;= 0 for stable systems.

</PRE>
<B>Workspace</B>
<PRE>
  IWORK   INTEGER array, dimension (LIWORK)

  LIWORK  INTEGER
          The dimension of the array IWORK.
          LIWORK &gt;= max(2*max(N,M-NCON,NP-NMEAS,NCON,NMEAS),N*N)

  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) contains the optimal
          value of LDWORK.

  LDWORK  INTEGER
          The dimension of the array DWORK.
          LDWORK &gt;= LW1 + max(1,LW2,LW3,LW4,LW5 + MAX(LW6,LW7)),
          where
          LW1 = N*M + NP*N + NP*M + M2*M2 + NP2*NP2;
          LW2 = max( ( N + NP1 + 1 )*( N + M2 ) +
                       max( 3*( N + M2 ) + N + NP1, 5*( N + M2 ) ),
                     ( N + NP2 )*( N + M1 + 1 ) +
                       max( 3*( N + NP2 ) + N + M1, 5*( N + NP2 ) ),
                     M2 + NP1*NP1 + max( NP1*max( N, M1 ),
                                         3*M2 + NP1, 5*M2 ),
                     NP2 + M1*M1 +  max( max( N, NP1 )*M1,
                                         3*NP2 + M1, 5*NP2 ) );
          LW3 = max( ND1*M1 + max( 4*min( ND1, M1 ) + max( ND1,M1 ),
                                   6*min( ND1, M1 ) ),
                     NP1*ND2 + max( 4*min( NP1, ND2 ) +
                                                     max( NP1,ND2 ),
                                    6*min( NP1, ND2 ) ) );
          LW4 = 2*M*M + NP*NP + 2*M*N + M*NP + 2*N*NP;
          LW5 = 2*N*N + M*N + N*NP;
          LW6 = max( M*M   + max( 2*M1, 3*N*N +
                                  max( N*M, 10*N*N + 12*N + 5 ) ),
                     NP*NP + max( 2*NP1, 3*N*N +
                                  max( N*NP, 10*N*N + 12*N + 5 ) ));
          LW7 = M2*NP2 + NP2*NP2 + M2*M2 +
                max( ND1*ND1 + max( 2*ND1, ( ND1 + ND2 )*NP2 ),
                     ND2*ND2 + max( 2*ND2, ND2*M2 ), 3*N,
                     N*( 2*NP2 + M2 ) +
                     max( 2*N*M2, M2*NP2 +
                                  max( M2*M2 + 3*M2, NP2*( 2*NP2 +
                                       M2 + max( NP2, N ) ) ) ) );
          M1  = M   - M2, NP1 = NP - NP2,
          ND1 = NP1 - M2, ND2 = M1 - NP2.
          For good performance, LDWORK must generally be larger.

  BWORK   LOGICAL array, dimension (LBWORK)

  LBWORK  INTEGER
          The dimension of the array BWORK.  LBWORK &gt;= 2*N.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = 1:  if the matrix | A-j*omega*I  B2  | had not full
                              |    C1        D12 |
                column rank in respect to the tolerance EPS;
          = 2:  if the matrix | A-j*omega*I  B1  |  had not full row
                              |    C2        D21 |
                rank in respect to the tolerance EPS;
          = 3:  if the matrix D12 had not full column rank in
                respect to the tolerance SQRT(EPS);
          = 4:  if the matrix D21 had not full row rank in respect
                to the tolerance SQRT(EPS);
          = 5:  if the singular value decomposition (SVD) algorithm
                did not converge (when computing the SVD of one of
                the matrices |A   B2 |, |A   B1 |, D12 or D21);
                             |C1  D12|  |C2  D21|
          = 6:  if the controller is not admissible (too small value
                of gamma);
          = 7:  if the X-Riccati equation was not solved
                successfully (the controller is not admissible or
                there are numerical difficulties);
          = 8:  if the Y-Riccati equation was not solved
                successfully (the controller is not admissible or
                there are numerical difficulties);
          = 9:  if the determinant of Im2 + Tu*D11HAT*Ty*D22 is
                zero [3];
          = 10: if there are numerical problems when estimating
                singular values of D1111, D1112, D1111', D1121';
          = 11: if the matrices Inp2 - D22*DK or Im2 - DK*D22
                are singular to working precision;
          = 12: if a stabilizing controller cannot be found.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The routine implements the Glover's and Doyle's 1988 formulas [1],
  [2], modified to improve the efficiency as described in [3].

  JOB = 1: It tries with a decreasing value of GAMMA, starting with
  the given, and with the newly obtained controller estimates of the
  closed-loop system. If it is stable, (i.e., max(eig(AC)) &lt; ACTOL)
  the iterations can be continued until the given tolerance between
  GAMMA and the estimated GAMMAMIN is reached. Otherwise, in the
  next step GAMMA is increased. The step in the all next iterations
  is step = step/2. The closed-loop system is obtained by the
  formulas given in [2].

  JOB = 2: The same as for JOB = 1, but with non-varying step till
  GAMMA = 0, step = max(0.1, GTOL).

  JOB = 3: Combines the JOB = 1 and JOB = 2 cases for a quicker
  procedure.

  JOB = 4: Suboptimal controller for current GAMMA only.

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Glover, K. and Doyle, J.C.
      State-space formulae for all stabilizing controllers that
      satisfy an Hinf norm bound and relations to risk sensitivity.
      Systems and Control Letters, vol. 11, pp. 167-172, 1988.

  [2] Balas, G.J., Doyle, J.C., Glover, K., Packard, A., and
      Smith, R.
      mu-Analysis and Synthesis Toolbox.
      The MathWorks Inc., Natick, MA, 1995.

  [3] Petkov, P.Hr., Gu, D.W., and Konstantinov, M.M.
      Fortran 77 routines for Hinf and H2 design of continuous-time
      linear control systems.
      Rep. 98-14, Department of Engineering, Leicester University,
      Leicester, U.K., 1998.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The accuracy of the result depends on the condition numbers of the
  input and output transformations and on the condition numbers of
  the two Riccati equations, as given by the values of RCOND(1),
  RCOND(2), RCOND(3) and RCOND(4), respectively.
  This approach by estimating the closed-loop system and checking
  its poles seems to be reliable.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>