1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
|
<HTML>
<HEAD><TITLE>SB10FD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="SB10FD">SB10FD</A></H2>
<H3>
H-infinity (sub)optimal state controller for a continuous-time system
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute the matrices of an H-infinity (sub)optimal n-state
controller
| AK | BK |
K = |----|----|,
| CK | DK |
using modified Glover's and Doyle's 1988 formulas, for the system
| A | B1 B2 | | A | B |
P = |----|---------| = |---|---|
| C1 | D11 D12 | | C | D |
| C2 | D21 D22 |
and for a given value of gamma, where B2 has as column size the
number of control inputs (NCON) and C2 has as row size the number
of measurements (NMEAS) being provided to the controller.
It is assumed that
(A1) (A,B2) is stabilizable and (C2,A) is detectable,
(A2) D12 is full column rank and D21 is full row rank,
(A3) | A-j*omega*I B2 | has full column rank for all omega,
| C1 D12 |
(A4) | A-j*omega*I B1 | has full row rank for all omega.
| C2 D21 |
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE SB10FD( N, M, NP, NCON, NMEAS, GAMMA, A, LDA, B, LDB,
$ C, LDC, D, LDD, AK, LDAK, BK, LDBK, CK, LDCK,
$ DK, LDDK, RCOND, TOL, IWORK, DWORK, LDWORK,
$ BWORK, INFO )
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD,
$ LDDK, LDWORK, M, N, NCON, NMEAS, NP
DOUBLE PRECISION GAMMA, TOL
C .. Array Arguments ..
LOGICAL BWORK( * )
INTEGER IWORK( * )
DOUBLE PRECISION A( LDA, * ), AK( LDAK, * ), B( LDB, * ),
$ BK( LDBK, * ), C( LDC, * ), CK( LDCK, * ),
$ D( LDD, * ), DK( LDDK, * ), DWORK( * ),
$ RCOND( 4 )
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the system. N >= 0.
M (input) INTEGER
The column size of the matrix B. M >= 0.
NP (input) INTEGER
The row size of the matrix C. NP >= 0.
NCON (input) INTEGER
The number of control inputs (M2). M >= NCON >= 0,
NP-NMEAS >= NCON.
NMEAS (input) INTEGER
The number of measurements (NP2). NP >= NMEAS >= 0,
M-NCON >= NMEAS.
GAMMA (input) DOUBLE PRECISION
The value of gamma. It is assumed that gamma is
sufficiently large so that the controller is admissible.
GAMMA >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The leading N-by-N part of this array must contain the
system state matrix A.
LDA INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input) DOUBLE PRECISION array, dimension (LDB,M)
The leading N-by-M part of this array must contain the
system input matrix B.
LDB INTEGER
The leading dimension of the array B. LDB >= max(1,N).
C (input) DOUBLE PRECISION array, dimension (LDC,N)
The leading NP-by-N part of this array must contain the
system output matrix C.
LDC INTEGER
The leading dimension of the array C. LDC >= max(1,NP).
D (input) DOUBLE PRECISION array, dimension (LDD,M)
The leading NP-by-M part of this array must contain the
system input/output matrix D.
LDD INTEGER
The leading dimension of the array D. LDD >= max(1,NP).
AK (output) DOUBLE PRECISION array, dimension (LDAK,N)
The leading N-by-N part of this array contains the
controller state matrix AK.
LDAK INTEGER
The leading dimension of the array AK. LDAK >= max(1,N).
BK (output) DOUBLE PRECISION array, dimension (LDBK,NMEAS)
The leading N-by-NMEAS part of this array contains the
controller input matrix BK.
LDBK INTEGER
The leading dimension of the array BK. LDBK >= max(1,N).
CK (output) DOUBLE PRECISION array, dimension (LDCK,N)
The leading NCON-by-N part of this array contains the
controller output matrix CK.
LDCK INTEGER
The leading dimension of the array CK.
LDCK >= max(1,NCON).
DK (output) DOUBLE PRECISION array, dimension (LDDK,NMEAS)
The leading NCON-by-NMEAS part of this array contains the
controller input/output matrix DK.
LDDK INTEGER
The leading dimension of the array DK.
LDDK >= max(1,NCON).
RCOND (output) DOUBLE PRECISION array, dimension (4)
RCOND(1) contains the reciprocal condition number of the
control transformation matrix;
RCOND(2) contains the reciprocal condition number of the
measurement transformation matrix;
RCOND(3) contains an estimate of the reciprocal condition
number of the X-Riccati equation;
RCOND(4) contains an estimate of the reciprocal condition
number of the Y-Riccati equation.
</PRE>
<B>Tolerances</B>
<PRE>
TOL DOUBLE PRECISION
Tolerance used for controlling the accuracy of the applied
transformations for computing the normalized form in
SLICOT Library routine SB10PD. Transformation matrices
whose reciprocal condition numbers are less than TOL are
not allowed. If TOL <= 0, then a default value equal to
sqrt(EPS) is used, where EPS is the relative machine
precision.
</PRE>
<B>Workspace</B>
<PRE>
IWORK INTEGER array, dimension (LIWORK), where
LIWORK = max(2*max(N,M-NCON,NP-NMEAS,NCON),N*N)
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) contains the optimal
LDWORK.
LDWORK INTEGER
The dimension of the array DWORK.
LDWORK >= N*M + NP*(N+M) + M2*M2 + NP2*NP2 +
max(1,LW1,LW2,LW3,LW4,LW5,LW6), where
LW1 = (N+NP1+1)*(N+M2) + max(3*(N+M2)+N+NP1,5*(N+M2)),
LW2 = (N+NP2)*(N+M1+1) + max(3*(N+NP2)+N+M1,5*(N+NP2)),
LW3 = M2 + NP1*NP1 + max(NP1*max(N,M1),3*M2+NP1,5*M2),
LW4 = NP2 + M1*M1 + max(max(N,NP1)*M1,3*NP2+M1,5*NP2),
LW5 = 2*N*N + N*(M+NP) +
max(1,M*M + max(2*M1,3*N*N+max(N*M,10*N*N+12*N+5)),
NP*NP + max(2*NP1,3*N*N +
max(N*NP,10*N*N+12*N+5))),
LW6 = 2*N*N + N*(M+NP) +
max(1, M2*NP2 + NP2*NP2 + M2*M2 +
max(D1*D1 + max(2*D1, (D1+D2)*NP2),
D2*D2 + max(2*D2, D2*M2), 3*N,
N*(2*NP2 + M2) +
max(2*N*M2, M2*NP2 +
max(M2*M2+3*M2, NP2*(2*NP2+
M2+max(NP2,N)))))),
with D1 = NP1 - M2, D2 = M1 - NP2,
NP1 = NP - NP2, M1 = M - M2.
For good performance, LDWORK must generally be larger.
Denoting Q = max(M1,M2,NP1,NP2), an upper bound is
2*Q*(3*Q+2*N)+max(1,(N+Q)*(N+Q+6),Q*(Q+max(N,Q,5)+1),
2*N*(N+2*Q)+max(1,4*Q*Q+
max(2*Q,3*N*N+max(2*N*Q,10*N*N+12*N+5)),
Q*(3*N+3*Q+max(2*N,4*Q+max(N,Q))))).
BWORK LOGICAL array, dimension (2*N)
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: if the matrix | A-j*omega*I B2 | had not full
| C1 D12 |
column rank in respect to the tolerance EPS;
= 2: if the matrix | A-j*omega*I B1 | had not full row
| C2 D21 |
rank in respect to the tolerance EPS;
= 3: if the matrix D12 had not full column rank in
respect to the tolerance TOL;
= 4: if the matrix D21 had not full row rank in respect
to the tolerance TOL;
= 5: if the singular value decomposition (SVD) algorithm
did not converge (when computing the SVD of one of
the matrices |A B2 |, |A B1 |, D12 or D21).
|C1 D12| |C2 D21|
= 6: if the controller is not admissible (too small value
of gamma);
= 7: if the X-Riccati equation was not solved
successfully (the controller is not admissible or
there are numerical difficulties);
= 8: if the Y-Riccati equation was not solved
successfully (the controller is not admissible or
there are numerical difficulties);
= 9: if the determinant of Im2 + Tu*D11HAT*Ty*D22 is
zero [3].
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The routine implements the Glover's and Doyle's 1988 formulas [1],
[2] modified to improve the efficiency as described in [3].
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Glover, K. and Doyle, J.C.
State-space formulae for all stabilizing controllers that
satisfy an Hinf norm bound and relations to risk sensitivity.
Systems and Control Letters, vol. 11, pp. 167-172, 1988.
[2] Balas, G.J., Doyle, J.C., Glover, K., Packard, A., and
Smith, R.
mu-Analysis and Synthesis Toolbox.
The MathWorks Inc., Natick, Mass., 1995.
[3] Petkov, P.Hr., Gu, D.W., and Konstantinov, M.M.
Fortran 77 routines for Hinf and H2 design of continuous-time
linear control systems.
Rep. 98-14, Department of Engineering, Leicester University,
Leicester, U.K., 1998.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The accuracy of the result depends on the condition numbers of the
input and output transformations and on the condition numbers of
the two Riccati equations, as given by the values of RCOND(1),
RCOND(2), RCOND(3) and RCOND(4), respectively.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* SB10FD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX, MMAX, PMAX, N2MAX
PARAMETER ( NMAX = 10, MMAX = 10, PMAX = 10, N2MAX = 20 )
INTEGER LDA, LDB, LDC, LDD, LDAK, LDBK, LDCK, LDDK,
$ LDAC, LDBC, LDCC, LDDC
PARAMETER ( LDA = NMAX, LDB = NMAX, LDC = PMAX, LDD = PMAX,
$ LDAK = NMAX, LDBK = NMAX, LDCK = MMAX,
$ LDDK = MMAX, LDAC = 2*NMAX, LDBC = 2*NMAX,
$ LDCC = PMAX, LDDC = PMAX )
INTEGER LIWORK
PARAMETER ( LIWORK = MAX( 2*MAX( NMAX, MMAX, PMAX ),
$ NMAX*NMAX ) )
INTEGER MPMX
PARAMETER ( MPMX = MAX( MMAX, PMAX ) )
INTEGER LDWORK
PARAMETER ( LDWORK = 2*MPMX*( 3*MPMX + 2*NMAX ) +
$ MAX( ( NMAX + MPMX )*( NMAX + MPMX + 6 ),
$ MPMX*( MPMX + MAX( NMAX, MPMX, 5 ) + 1 ),
$ 2*NMAX*( NMAX + 2*MPMX ) +
$ MAX( 4*MPMX*MPMX + MAX( 2*MPMX, 3*NMAX*NMAX +
$ MAX( 2*NMAX*MPMX, 10*NMAX*NMAX+12*NMAX+5 ) ),
$ MPMX*( 3*NMAX + 3*MPMX +
$ MAX( 2*NMAX, 4*MPMX +
$ MAX( NMAX, MPMX ) ) ) ) ) )
* .. Local Scalars ..
INTEGER SDIM
LOGICAL SELECT
DOUBLE PRECISION GAMMA, TOL
INTEGER I, INFO1, INFO2, INFO3, J, M, N, NCON, NMEAS, NP
* .. Local Arrays ..
LOGICAL BWORK(N2MAX)
INTEGER IWORK(LIWORK)
DOUBLE PRECISION A(LDA,NMAX), AK(LDAK,NMAX), AC(LDAC,N2MAX),
$ B(LDB,MMAX), BK(LDBK,PMAX), BC(LDBC,MMAX),
$ C(LDC,NMAX), CK(LDCK,NMAX), CC(LDCC,N2MAX),
$ D(LDD,MMAX), DK(LDDK,PMAX), DC(LDDC,MMAX),
$ DWORK(LDWORK), RCOND( 4 )
* .. External Subroutines ..
EXTERNAL SB10FD, SB10LD
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, M, NP, NCON, NMEAS
IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99987 ) N
ELSE IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99986 ) M
ELSE IF ( NP.LT.0 .OR. NP.GT.PMAX ) THEN
WRITE ( NOUT, FMT = 99985 ) NP
ELSE IF ( NCON.LT.0 .OR. NCON.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99984 ) NCON
ELSE IF ( NMEAS.LT.0 .OR. NMEAS.GT.PMAX ) THEN
WRITE ( NOUT, FMT = 99983 ) NMEAS
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,N )
READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,NP )
READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,NP )
READ ( NIN, FMT = * ) GAMMA, TOL
* Compute the suboptimal controller
CALL SB10FD( N, M, NP, NCON, NMEAS, GAMMA, A, LDA, B, LDB,
$ C, LDC, D, LDD, AK, LDAK, BK, LDBK, CK, LDCK,
$ DK, LDDK, RCOND, TOL, IWORK, DWORK, LDWORK,
$ BWORK, INFO1 )
*
IF ( INFO1.EQ.0 ) THEN
WRITE ( NOUT, FMT = 99996 )
DO 10 I = 1, N
WRITE ( NOUT, FMT = 99989 ) ( AK(I,J), J = 1,N )
10 CONTINUE
WRITE ( NOUT, FMT = 99995 )
DO 20 I = 1, N
WRITE ( NOUT, FMT = 99989 ) ( BK(I,J), J = 1,NMEAS )
20 CONTINUE
WRITE ( NOUT, FMT = 99994 )
DO 30 I = 1, NCON
WRITE ( NOUT, FMT = 99989 ) ( CK(I,J), J = 1,N )
30 CONTINUE
WRITE ( NOUT, FMT = 99993 )
DO 40 I = 1, NCON
WRITE ( NOUT, FMT = 99989 ) ( DK(I,J), J = 1,NMEAS )
40 CONTINUE
WRITE( NOUT, FMT = 99992 )
WRITE( NOUT, FMT = 99988 ) ( RCOND(I), I = 1, 4 )
* Compute the closed-loop matrices
CALL SB10LD(N, M, NP, NCON, NMEAS, A, LDA, B, LDB, C, LDC,
$ D, LDD, AK, LDAK, BK, LDBK, CK, LDCK, DK, LDDK,
$ AC, LDAC, BC, LDBC, CC, LDCC, DC, LDDC, IWORK,
$ DWORK, LDWORK, INFO2 )
*
IF ( INFO2.EQ.0 ) THEN
* Compute the closed-loop poles
CALL DGEES( 'N','N', SELECT, 2*N, AC, LDAC, SDIM,
$ DWORK(1), DWORK(2*N+1), DWORK, 2*N,
$ DWORK(4*N+1), LDWORK-4*N, BWORK, INFO3)
*
IF( INFO3.EQ.0 ) THEN
WRITE( NOUT, FMT = 99991 )
WRITE( NOUT, FMT = 99988 ) (DWORK(I), I =1, 2*N)
WRITE( NOUT, FMT = 99990 )
WRITE( NOUT, FMT = 99988 ) (DWORK(2*N+I), I =1, 2*N)
ELSE
WRITE( NOUT, FMT = 99996 ) INFO3
END IF
ELSE
WRITE( NOUT, FMT = 99997 ) INFO2
END IF
ELSE
WRITE( NOUT, FMT = 99998 ) INFO1
END IF
END IF
STOP
*
99999 FORMAT (' SB10FD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (/' INFO on exit from SB10FD =',I2)
99997 FORMAT (/' INFO on exit from SB10LD =',I2)
99996 FORMAT (' The controller state matrix AK is'/)
99995 FORMAT (/' The controller input matrix BK is'/)
99994 FORMAT (/' The controller output matrix CK is'/)
99993 FORMAT (/' The controller matrix DK is'/)
99992 FORMAT (/' The estimated condition numbers are'/)
99991 FORMAT (/' The real parts of the closed-loop system poles are'/)
99990 FORMAT (/' The imaginary parts of the closed-loop system',
$ ' poles are'/)
99989 FORMAT (10(1X,F8.4))
99988 FORMAT ( 5(1X,D12.5))
99987 FORMAT (/' N is out of range.',/' N = ',I5)
99986 FORMAT (/' M is out of range.',/' M = ',I5)
99985 FORMAT (/' N is out of range.',/' N = ',I5)
99984 FORMAT (/' NCON is out of range.',/' NCON = ',I5)
99983 FORMAT (/' NMEAS is out of range.',/' NMEAS = ',I5)
END
</PRE>
<B>Program Data</B>
<PRE>
SB10FD EXAMPLE PROGRAM DATA
6 5 5 2 2
-1.0 0.0 4.0 5.0 -3.0 -2.0
-2.0 4.0 -7.0 -2.0 0.0 3.0
-6.0 9.0 -5.0 0.0 2.0 -1.0
-8.0 4.0 7.0 -1.0 -3.0 0.0
2.0 5.0 8.0 -9.0 1.0 -4.0
3.0 -5.0 8.0 0.0 2.0 -6.0
-3.0 -4.0 -2.0 1.0 0.0
2.0 0.0 1.0 -5.0 2.0
-5.0 -7.0 0.0 7.0 -2.0
4.0 -6.0 1.0 1.0 -2.0
-3.0 9.0 -8.0 0.0 5.0
1.0 -2.0 3.0 -6.0 -2.0
1.0 -1.0 2.0 -4.0 0.0 -3.0
-3.0 0.0 5.0 -1.0 1.0 1.0
-7.0 5.0 0.0 -8.0 2.0 -2.0
9.0 -3.0 4.0 0.0 3.0 7.0
0.0 1.0 -2.0 1.0 -6.0 -2.0
1.0 -2.0 -3.0 0.0 0.0
0.0 4.0 0.0 1.0 0.0
5.0 -3.0 -4.0 0.0 1.0
0.0 1.0 0.0 1.0 -3.0
0.0 0.0 1.0 7.0 1.0
15.0 0.00000001
</PRE>
<B>Program Results</B>
<PRE>
SB10FD EXAMPLE PROGRAM RESULTS
The controller state matrix AK is
-2.8043 14.7367 4.6658 8.1596 0.0848 2.5290
4.6609 3.2756 -3.5754 -2.8941 0.2393 8.2920
-15.3127 23.5592 -7.1229 2.7599 5.9775 -2.0285
-22.0691 16.4758 12.5523 -16.3602 4.4300 -3.3168
30.6789 -3.9026 -1.3868 26.2357 -8.8267 10.4860
-5.7429 0.0577 10.8216 -11.2275 1.5074 -10.7244
The controller input matrix BK is
-0.1581 -0.0793
-0.9237 -0.5718
0.7984 0.6627
0.1145 0.1496
-0.6743 -0.2376
0.0196 -0.7598
The controller output matrix CK is
-0.2480 -0.1713 -0.0880 0.1534 0.5016 -0.0730
2.8810 -0.3658 1.3007 0.3945 1.2244 2.5690
The controller matrix DK is
0.0554 0.1334
-0.3195 0.0333
The estimated condition numbers are
0.10000D+01 0.10000D+01 0.11241D-01 0.80492D-03
The real parts of the closed-loop system poles are
-0.10731D+03 -0.66556D+02 -0.38269D+02 -0.38269D+02 -0.20089D+02
-0.62557D+01 -0.62557D+01 -0.32405D+01 -0.32405D+01 -0.17178D+01
-0.41466D+01 -0.76437D+01
The imaginary parts of the closed-loop system poles are
0.00000D+00 0.00000D+00 0.13114D+02 -0.13114D+02 0.00000D+00
0.12961D+02 -0.12961D+02 0.67998D+01 -0.67998D+01 0.00000D+00
0.00000D+00 0.00000D+00
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|