1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
<HTML>
<HEAD><TITLE>SB10ID - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="SB10ID">SB10ID</A></H2>
<H3>
Positive feedback controller for a continuous-time system
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute the matrices of the positive feedback controller
| Ak | Bk |
K = |----|----|
| Ck | Dk |
for the shaped plant
| A | B |
G = |---|---|
| C | D |
in the McFarlane/Glover Loop Shaping Design Procedure.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE SB10ID( N, M, NP, A, LDA, B, LDB, C, LDC, D, LDD,
$ FACTOR, NK, AK, LDAK, BK, LDBK, CK, LDCK,
$ DK, LDDK, RCOND, IWORK, DWORK, LDWORK, BWORK,
$ INFO )
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD,
$ LDDK, LDWORK, M, N, NK, NP
DOUBLE PRECISION FACTOR
C .. Array Arguments ..
INTEGER IWORK( * )
LOGICAL BWORK( * )
DOUBLE PRECISION A( LDA, * ), AK( LDAK, * ), B( LDB, * ),
$ BK( LDBK, * ), C( LDC, * ), CK( LDCK, * ),
$ D( LDD, * ), DK( LDDK, * ), DWORK( * ),
$ RCOND( 2 )
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the plant. N >= 0.
M (input) INTEGER
The column size of the matrix B. M >= 0.
NP (input) INTEGER
The row size of the matrix C. NP >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The leading N-by-N part of this array must contain the
system state matrix A of the shaped plant.
LDA INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input) DOUBLE PRECISION array, dimension (LDB,M)
The leading N-by-M part of this array must contain the
system input matrix B of the shaped plant.
LDB INTEGER
The leading dimension of the array B. LDB >= max(1,N).
C (input) DOUBLE PRECISION array, dimension (LDC,N)
The leading NP-by-N part of this array must contain the
system output matrix C of the shaped plant.
LDC INTEGER
The leading dimension of the array C. LDC >= max(1,NP).
D (input) DOUBLE PRECISION array, dimension (LDD,M)
The leading NP-by-M part of this array must contain the
system matrix D of the shaped plant.
LDD INTEGER
The leading dimension of the array D. LDD >= max(1,NP).
FACTOR (input) DOUBLE PRECISION
= 1 implies that an optimal controller is required;
> 1 implies that a suboptimal controller is required,
achieving a performance FACTOR less than optimal.
FACTOR >= 1.
NK (output) INTEGER
The order of the positive feedback controller. NK <= N.
AK (output) DOUBLE PRECISION array, dimension (LDAK,N)
The leading NK-by-NK part of this array contains the
controller state matrix Ak.
LDAK INTEGER
The leading dimension of the array AK. LDAK >= max(1,N).
BK (output) DOUBLE PRECISION array, dimension (LDBK,NP)
The leading NK-by-NP part of this array contains the
controller input matrix Bk.
LDBK INTEGER
The leading dimension of the array BK. LDBK >= max(1,N).
CK (output) DOUBLE PRECISION array, dimension (LDCK,N)
The leading M-by-NK part of this array contains the
controller output matrix Ck.
LDCK INTEGER
The leading dimension of the array CK. LDCK >= max(1,M).
DK (output) DOUBLE PRECISION array, dimension (LDDK,NP)
The leading M-by-NP part of this array contains the
controller matrix Dk.
LDDK INTEGER
The leading dimension of the array DK. LDDK >= max(1,M).
RCOND (output) DOUBLE PRECISION array, dimension (2)
RCOND(1) contains an estimate of the reciprocal condition
number of the X-Riccati equation;
RCOND(2) contains an estimate of the reciprocal condition
number of the Z-Riccati equation.
</PRE>
<B>Workspace</B>
<PRE>
IWORK INTEGER array, dimension (max(2*N,N*N,M,NP))
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) contains the optimal value
of LDWORK.
LDWORK INTEGER
The dimension of the array DWORK.
LDWORK >= 4*N*N + M*M + NP*NP + 2*M*N + N*NP + 4*N +
max( 6*N*N + 5 + max(1,4*N*N+8*N), N*NP + 2*N ).
For good performance, LDWORK must generally be larger.
An upper bound of LDWORK in the above formula is
LDWORK >= 10*N*N + M*M + NP*NP + 2*M*N + 2*N*NP + 4*N +
5 + max(1,4*N*N+8*N).
BWORK LOGICAL array, dimension (2*N)
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: the X-Riccati equation is not solved successfully;
= 2: the Z-Riccati equation is not solved successfully;
= 3: the iteration to compute eigenvalues or singular
values failed to converge;
= 4: the matrix Ip - D*Dk is singular;
= 5: the matrix Im - Dk*D is singular;
= 6: the closed-loop system is unstable.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The routine implements the formulas given in [1].
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] McFarlane, D. and Glover, K.
A loop shaping design procedure using H_infinity synthesis.
IEEE Trans. Automat. Control, vol. AC-37, no. 6, pp. 759-769,
1992.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The accuracy of the results depends on the conditioning of the
two Riccati equations solved in the controller design (see the
output parameter RCOND).
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* SB10ID EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX, MMAX, PMAX
PARAMETER ( NMAX = 10, MMAX = 10, PMAX = 10 )
INTEGER LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD, LDDK
PARAMETER ( LDA = NMAX, LDAK = NMAX, LDB = NMAX,
$ LDBK = NMAX, LDC = PMAX, LDCK = MMAX,
$ LDD = PMAX, LDDK = MMAX )
INTEGER LIWORK
PARAMETER ( LIWORK = MAX( 2*NMAX, NMAX*NMAX, MMAX, PMAX ) )
INTEGER LDWORK
PARAMETER ( LDWORK = 4*NMAX*NMAX + MMAX*MMAX + PMAX*PMAX +
$ 2*MMAX*NMAX + NMAX*PMAX + 4*NMAX +
$ MAX( 10*NMAX*NMAX + 8*NMAX + 5,
$ NMAX*PMAX + 2*NMAX ) )
* .. Local Scalars ..
DOUBLE PRECISION FACTOR
INTEGER I, INFO, J, M, N, NK, NP
* .. Local Arrays ..
LOGICAL BWORK(2*NMAX)
INTEGER IWORK(LIWORK)
DOUBLE PRECISION A(LDA,NMAX), AK(LDA,NMAX), B(LDB,MMAX),
$ BK(LDBK,PMAX), C(LDC,NMAX), CK(LDCK,NMAX),
$ D(LDD,MMAX), DK(LDDK,PMAX), DWORK(LDWORK),
$ RCOND( 2 )
* .. External Subroutines ..
EXTERNAL SB10ID
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, M, NP
IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99990 ) N
ELSE IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99989 ) M
ELSE IF ( NP.LT.0 .OR. NP.GT.PMAX ) THEN
WRITE ( NOUT, FMT = 99988 ) NP
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,N )
READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,NP )
READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,NP )
READ ( NIN, FMT = * ) FACTOR
CALL SB10ID( N, M, NP, A, LDA, B, LDB, C, LDC, D, LDD,
$ FACTOR, NK, AK, LDAK, BK, LDBK, CK, LDCK,
$ DK, LDDK, RCOND, IWORK, DWORK, LDWORK,
$ BWORK, INFO )
IF ( INFO.EQ.0 ) THEN
WRITE ( NOUT, FMT = 99997 )
DO 10 I = 1, NK
WRITE ( NOUT, FMT = 99992 ) ( AK(I,J), J = 1,NK )
10 CONTINUE
WRITE ( NOUT, FMT = 99996 )
DO 20 I = 1, NK
WRITE ( NOUT, FMT = 99992 ) ( BK(I,J), J = 1,NP )
20 CONTINUE
WRITE ( NOUT, FMT = 99995 )
DO 30 I = 1, M
WRITE ( NOUT, FMT = 99992 ) ( CK(I,J), J = 1,NK )
30 CONTINUE
WRITE ( NOUT, FMT = 99994 )
DO 40 I = 1, M
WRITE ( NOUT, FMT = 99992 ) ( DK(I,J), J = 1,NP )
40 CONTINUE
WRITE( NOUT, FMT = 99993 )
WRITE( NOUT, FMT = 99991 ) ( RCOND(I), I = 1, 2 )
ELSE
WRITE( NOUT, FMT = 99998 ) INFO
END IF
END IF
STOP
*
99999 FORMAT (' SB10ID EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (/' INFO on exit from SB10ID =',I2)
99997 FORMAT (/' The controller state matrix AK is'/)
99996 FORMAT (/' The controller input matrix BK is'/)
99995 FORMAT (/' The controller output matrix CK is'/)
99994 FORMAT (/' The controller matrix DK is'/)
99993 FORMAT (/' The estimated condition numbers are'/)
99992 FORMAT (10(1X,F9.4))
99991 FORMAT ( 2(1X,D12.5))
99990 FORMAT (/' N is out of range.',/' N = ',I5)
99989 FORMAT (/' M is out of range.',/' M = ',I5)
99988 FORMAT (/' NP is out of range.',/' NP = ',I5)
END
</PRE>
<B>Program Data</B>
<PRE>
SB10ID EXAMPLE PROGRAM DATA
6 2 3
-1.0 0.0 4.0 5.0 -3.0 -2.0
-2.0 4.0 -7.0 -2.0 0.0 3.0
-6.0 9.0 -5.0 0.0 2.0 -1.0
-8.0 4.0 7.0 -1.0 -3.0 0.0
2.0 5.0 8.0 -9.0 1.0 -4.0
3.0 -5.0 8.0 0.0 2.0 -6.0
-3.0 -4.0
2.0 0.0
-5.0 -7.0
4.0 -6.0
-3.0 9.0
1.0 -2.0
1.0 -1.0 2.0 -4.0 0.0 -3.0
-3.0 0.0 5.0 -1.0 1.0 1.0
-7.0 5.0 0.0 -8.0 2.0 -2.0
1.0 -2.0
0.0 4.0
5.0 -3.0
1.0
</PRE>
<B>Program Results</B>
<PRE>
SB10ID EXAMPLE PROGRAM RESULTS
The controller state matrix AK is
-39.0671 9.9293 22.2322 -27.4113 43.8655
-6.6117 3.0006 11.0878 -11.4130 15.4269
33.6805 -6.6934 -23.9953 14.1438 -33.4358
-32.3191 9.7316 25.4033 -24.0473 42.0517
-44.1655 18.7767 34.8873 -42.4369 50.8437
The controller input matrix BK is
-10.2905 -16.5382 -10.9782
-4.3598 -8.7525 -5.1447
6.5962 1.8975 6.2316
-9.8770 -14.7041 -11.8778
-9.6726 -22.7309 -18.2692
The controller output matrix CK is
-0.6647 -0.0599 -1.0376 0.5619 1.7297
-8.4202 3.9573 7.3094 -7.6283 10.6768
The controller matrix DK is
0.8466 0.4979 -0.6993
-1.2226 -4.8689 -4.5056
The estimated condition numbers are
0.13861D-01 0.90541D-02
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|