File: SB10ID.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (362 lines) | stat: -rw-r--r-- 12,091 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
<HTML>
<HEAD><TITLE>SB10ID - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="SB10ID">SB10ID</A></H2>
<H3>
Positive feedback controller for a continuous-time system
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute the matrices of the positive feedback controller

           | Ak | Bk |
       K = |----|----|
           | Ck | Dk |

  for the shaped plant

           | A | B |
       G = |---|---|
           | C | D |

  in the McFarlane/Glover Loop Shaping Design Procedure.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE SB10ID( N, M, NP, A, LDA, B, LDB, C, LDC, D, LDD,
     $                   FACTOR, NK, AK, LDAK, BK, LDBK, CK, LDCK,
     $                   DK, LDDK, RCOND, IWORK, DWORK, LDWORK, BWORK,
     $                   INFO )
C     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD,
     $                   LDDK, LDWORK, M, N, NK, NP
      DOUBLE PRECISION   FACTOR
C     .. Array Arguments ..
      INTEGER            IWORK( * )
      LOGICAL            BWORK( * )
      DOUBLE PRECISION   A( LDA, * ), AK( LDAK, * ), B( LDB, * ),
     $                   BK( LDBK, * ), C( LDC, * ), CK( LDCK, * ),
     $                   D( LDD, * ), DK( LDDK, * ), DWORK( * ),
     $                   RCOND( 2 )

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the plant.  N &gt;= 0.

  M       (input) INTEGER
          The column size of the matrix B.  M &gt;= 0.

  NP      (input) INTEGER
          The row size of the matrix C.  NP &gt;= 0.

  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
          The leading N-by-N part of this array must contain the
          system state matrix A of the shaped plant.

  LDA     INTEGER
          The leading dimension of the array A.  LDA &gt;= max(1,N).

  B       (input) DOUBLE PRECISION array, dimension (LDB,M)
          The leading N-by-M part of this array must contain the
          system input matrix B of the shaped plant.

  LDB     INTEGER
          The leading dimension of the array B.  LDB &gt;= max(1,N).

  C       (input) DOUBLE PRECISION array, dimension (LDC,N)
          The leading NP-by-N part of this array must contain the
          system output matrix C of the shaped plant.

  LDC     INTEGER
          The leading dimension of the array C.  LDC &gt;= max(1,NP).

  D       (input) DOUBLE PRECISION array, dimension (LDD,M)
          The leading NP-by-M part of this array must contain the
          system matrix D of the shaped plant.

  LDD     INTEGER
          The leading dimension of the array D.  LDD &gt;= max(1,NP).

  FACTOR  (input) DOUBLE PRECISION
          = 1 implies that an optimal controller is required;
          &gt; 1 implies that a suboptimal controller is required,
              achieving a performance FACTOR less than optimal.
          FACTOR &gt;= 1.

  NK      (output) INTEGER
          The order of the positive feedback controller.  NK &lt;= N.

  AK      (output) DOUBLE PRECISION array, dimension (LDAK,N)
          The leading NK-by-NK part of this array contains the
          controller state matrix Ak.

  LDAK    INTEGER
          The leading dimension of the array AK.  LDAK &gt;= max(1,N).

  BK      (output) DOUBLE PRECISION array, dimension (LDBK,NP)
          The leading NK-by-NP part of this array contains the
          controller input matrix Bk.

  LDBK    INTEGER
          The leading dimension of the array BK.  LDBK &gt;= max(1,N).

  CK      (output) DOUBLE PRECISION array, dimension (LDCK,N)
          The leading M-by-NK part of this array contains the
          controller output matrix Ck.

  LDCK    INTEGER
          The leading dimension of the array CK.  LDCK &gt;= max(1,M).

  DK      (output) DOUBLE PRECISION array, dimension (LDDK,NP)
          The leading M-by-NP part of this array contains the
          controller matrix Dk.

  LDDK    INTEGER
          The leading dimension of the array DK.  LDDK &gt;= max(1,M).

  RCOND   (output) DOUBLE PRECISION array, dimension (2)
          RCOND(1) contains an estimate of the reciprocal condition
                   number of the X-Riccati equation;
          RCOND(2) contains an estimate of the reciprocal condition
                   number of the Z-Riccati equation.

</PRE>
<B>Workspace</B>
<PRE>
  IWORK   INTEGER array, dimension (max(2*N,N*N,M,NP))

  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) contains the optimal value
          of LDWORK.

  LDWORK  INTEGER
          The dimension of the array DWORK.
          LDWORK &gt;= 4*N*N + M*M + NP*NP + 2*M*N + N*NP + 4*N +
                    max( 6*N*N + 5 + max(1,4*N*N+8*N), N*NP + 2*N ).
          For good performance, LDWORK must generally be larger.
          An upper bound of LDWORK in the above formula is
          LDWORK &gt;= 10*N*N + M*M + NP*NP + 2*M*N + 2*N*NP + 4*N +
                    5 + max(1,4*N*N+8*N).

  BWORK   LOGICAL array, dimension (2*N)

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = 1:  the X-Riccati equation is not solved successfully;
          = 2:  the Z-Riccati equation is not solved successfully;
          = 3:  the iteration to compute eigenvalues or singular
                values failed to converge;
          = 4:  the matrix Ip - D*Dk is singular;
          = 5:  the matrix Im - Dk*D is singular;
          = 6:  the closed-loop system is unstable.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The routine implements the formulas given in [1].

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] McFarlane, D. and Glover, K.
      A loop shaping design procedure using H_infinity synthesis.
      IEEE Trans. Automat. Control, vol. AC-37, no. 6, pp. 759-769,
      1992.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The accuracy of the results depends on the conditioning of the
  two Riccati equations solved in the controller design (see the
  output parameter RCOND).

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
*     SB10ID EXAMPLE PROGRAM TEXT
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          NMAX, MMAX, PMAX
      PARAMETER        ( NMAX = 10, MMAX = 10, PMAX = 10 )
      INTEGER          LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD, LDDK
      PARAMETER        ( LDA  = NMAX, LDAK = NMAX, LDB  = NMAX,
     $                   LDBK = NMAX, LDC  = PMAX, LDCK = MMAX,
     $                   LDD  = PMAX, LDDK = MMAX )
      INTEGER          LIWORK
      PARAMETER        ( LIWORK = MAX( 2*NMAX, NMAX*NMAX, MMAX, PMAX ) )
      INTEGER          LDWORK
      PARAMETER        ( LDWORK = 4*NMAX*NMAX + MMAX*MMAX + PMAX*PMAX +
     $                            2*MMAX*NMAX + NMAX*PMAX + 4*NMAX +
     $                            MAX( 10*NMAX*NMAX + 8*NMAX + 5,
     $                                    NMAX*PMAX + 2*NMAX ) )
*     .. Local Scalars ..
      DOUBLE PRECISION FACTOR
      INTEGER          I, INFO, J, M, N, NK, NP
*     .. Local Arrays ..
      LOGICAL          BWORK(2*NMAX)
      INTEGER          IWORK(LIWORK)
      DOUBLE PRECISION A(LDA,NMAX), AK(LDA,NMAX), B(LDB,MMAX),
     $                 BK(LDBK,PMAX), C(LDC,NMAX), CK(LDCK,NMAX),
     $                 D(LDD,MMAX), DK(LDDK,PMAX), DWORK(LDWORK),
     $                 RCOND( 2 )
*     .. External Subroutines ..
      EXTERNAL         SB10ID
*     .. Intrinsic Functions ..
      INTRINSIC        MAX
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N, M, NP
      IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99990 ) N
      ELSE IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
         WRITE ( NOUT, FMT = 99989 ) M
      ELSE IF ( NP.LT.0 .OR. NP.GT.PMAX ) THEN
         WRITE ( NOUT, FMT = 99988 ) NP
      ELSE
         READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
         READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,N )
         READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,NP )
         READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,NP )
         READ ( NIN, FMT = * ) FACTOR
         CALL SB10ID( N, M, NP, A, LDA, B, LDB, C, LDC, D, LDD,
     $                FACTOR, NK, AK, LDAK, BK, LDBK, CK, LDCK,
     $                DK, LDDK, RCOND, IWORK, DWORK, LDWORK,
     $                BWORK, INFO )
         IF ( INFO.EQ.0 ) THEN
            WRITE ( NOUT, FMT = 99997 )
            DO 10 I = 1, NK
               WRITE ( NOUT, FMT = 99992 ) ( AK(I,J), J = 1,NK )
   10       CONTINUE
            WRITE ( NOUT, FMT = 99996 )
            DO 20 I = 1, NK
               WRITE ( NOUT, FMT = 99992 ) ( BK(I,J), J = 1,NP )
   20       CONTINUE
            WRITE ( NOUT, FMT = 99995 )
            DO 30 I = 1, M
               WRITE ( NOUT, FMT = 99992 ) ( CK(I,J), J = 1,NK )
   30       CONTINUE
            WRITE ( NOUT, FMT = 99994 )
            DO 40 I = 1, M
               WRITE ( NOUT, FMT = 99992 ) ( DK(I,J), J = 1,NP )
   40       CONTINUE
            WRITE( NOUT, FMT = 99993 )
            WRITE( NOUT, FMT = 99991 ) ( RCOND(I), I = 1, 2 )
         ELSE
            WRITE( NOUT, FMT = 99998 ) INFO
         END IF
      END IF
      STOP
*
99999 FORMAT (' SB10ID EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (/' INFO on exit from SB10ID =',I2)
99997 FORMAT (/' The controller state matrix AK is'/)
99996 FORMAT (/' The controller input matrix BK is'/)
99995 FORMAT (/' The controller output matrix CK is'/)
99994 FORMAT (/' The controller matrix DK is'/)
99993 FORMAT (/' The estimated condition numbers are'/)
99992 FORMAT (10(1X,F9.4))
99991 FORMAT ( 2(1X,D12.5))
99990 FORMAT (/' N is out of range.',/' N = ',I5)
99989 FORMAT (/' M is out of range.',/' M = ',I5)
99988 FORMAT (/' NP is out of range.',/' NP = ',I5)
      END
</PRE>
<B>Program Data</B>
<PRE>
 SB10ID EXAMPLE PROGRAM DATA
   6     2     3   
  -1.0  0.0  4.0  5.0 -3.0 -2.0
  -2.0  4.0 -7.0 -2.0  0.0  3.0
  -6.0  9.0 -5.0  0.0  2.0 -1.0
  -8.0  4.0  7.0 -1.0 -3.0  0.0
   2.0  5.0  8.0 -9.0  1.0 -4.0
   3.0 -5.0  8.0  0.0  2.0 -6.0
  -3.0 -4.0
   2.0  0.0
  -5.0 -7.0
   4.0 -6.0
  -3.0  9.0
   1.0 -2.0
   1.0 -1.0  2.0 -4.0  0.0 -3.0
  -3.0  0.0  5.0 -1.0  1.0  1.0
  -7.0  5.0  0.0 -8.0  2.0 -2.0
   1.0 -2.0
   0.0  4.0
   5.0 -3.0
   1.0
</PRE>
<B>Program Results</B>
<PRE>
 SB10ID EXAMPLE PROGRAM RESULTS


 The controller state matrix AK is

  -39.0671    9.9293   22.2322  -27.4113   43.8655
   -6.6117    3.0006   11.0878  -11.4130   15.4269
   33.6805   -6.6934  -23.9953   14.1438  -33.4358
  -32.3191    9.7316   25.4033  -24.0473   42.0517
  -44.1655   18.7767   34.8873  -42.4369   50.8437

 The controller input matrix BK is

  -10.2905  -16.5382  -10.9782
   -4.3598   -8.7525   -5.1447
    6.5962    1.8975    6.2316
   -9.8770  -14.7041  -11.8778
   -9.6726  -22.7309  -18.2692

 The controller output matrix CK is

   -0.6647   -0.0599   -1.0376    0.5619    1.7297
   -8.4202    3.9573    7.3094   -7.6283   10.6768

 The controller matrix DK is

    0.8466    0.4979   -0.6993
   -1.2226   -4.8689   -4.5056

 The estimated condition numbers are

  0.13861D-01  0.90541D-02
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>