File: SB10JD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (163 lines) | stat: -rw-r--r-- 4,986 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
<HTML>
<HEAD><TITLE>SB10JD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="SB10JD">SB10JD</A></H2>
<H3>
Converting a descriptor state-space system into regular state-space form
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To convert the descriptor state-space system

  E*dx/dt = A*x + B*u
        y = C*x + D*u

  into regular state-space form

   dx/dt = Ad*x + Bd*u
       y = Cd*x + Dd*u .

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE SB10JD( N, M, NP, A, LDA, B, LDB, C, LDC, D, LDD, E,
     $                   LDE, NSYS, DWORK, LDWORK, INFO )
C     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDB, LDC, LDD, LDE, LDWORK, M, N,
     $                   NP, NSYS
C     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, * ),
     $                   D( LDD, * ), DWORK( * ),  E( LDE, * )

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the descriptor system.  N &gt;= 0.

  M       (input) INTEGER
          The column size of the matrix B.  M &gt;= 0.

  NP      (input) INTEGER
          The row size of the matrix C.  NP &gt;= 0.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N part of this array must
          contain the state matrix A of the descriptor system.
          On exit, the leading NSYS-by-NSYS part of this array
          contains the state matrix Ad of the converted system.

  LDA     INTEGER
          The leading dimension of the array A.  LDA &gt;= max(1,N).

  B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
          On entry, the leading N-by-M part of this array must
          contain the input matrix B of the descriptor system.
          On exit, the leading NSYS-by-M part of this array
          contains the input matrix Bd of the converted system.

  LDB     INTEGER
          The leading dimension of the array B.  LDB &gt;= max(1,N).

  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
          On entry, the leading NP-by-N part of this array must
          contain the output matrix C of the descriptor system.
          On exit, the leading NP-by-NSYS part of this array
          contains the output matrix Cd of the converted system.

  LDC     INTEGER
          The leading dimension of the array C.  LDC &gt;= max(1,NP).

  D       (input/output) DOUBLE PRECISION array, dimension (LDD,M)
          On entry, the leading NP-by-M part of this array must
          contain the matrix D of the descriptor system.
          On exit, the leading NP-by-M part of this array contains
          the matrix Dd of the converted system.

  LDD     INTEGER
          The leading dimension of the array D.  LDD &gt;= max(1,NP).

  E       (input/output) DOUBLE PRECISION array, dimension (LDE,N)
          On entry, the leading N-by-N part of this array must
          contain the matrix E of the descriptor system.
          On exit, this array contains no useful information.

  LDE     INTEGER
          The leading dimension of the array E.  LDE &gt;= max(1,N).

  NSYS    (output) INTEGER
          The order of the converted state-space system.

</PRE>
<B>Workspace</B>
<PRE>
  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) contains the optimal value
          of LDWORK.

  LDWORK  INTEGER
          The dimension of the array DWORK.
          LDWORK &gt;= max( 1, 2*N*N + 2*N + N*MAX( 5, N + M + NP ) ).
          For good performance, LDWORK must generally be larger.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = 1:  the iteration for computing singular value
                decomposition did not converge.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The routine performs the transformations described in [1].

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Chiang, R.Y. and Safonov, M.G.
      Robust Control Toolbox User's Guide.
      The MathWorks Inc., Natick, Mass., 1992.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>