File: SB10WD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (216 lines) | stat: -rw-r--r-- 6,885 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
<HTML>
<HEAD><TITLE>SB10WD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="SB10WD">SB10WD</A></H2>
<H3>
H2 optimal controller matrices using state feedback and output injection matrices (continuous-time)
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute the matrices of the H2 optimal controller

           | AK | BK |
       K = |----|----|,
           | CK | DK |

  from the state feedback matrix F and output injection matrix H as
  determined by the SLICOT Library routine SB10VD.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE SB10WD( N, M, NP, NCON, NMEAS, A, LDA, B, LDB, C, LDC,
     $                   D, LDD, F, LDF, H, LDH, TU, LDTU, TY, LDTY,
     $                   AK, LDAK, BK, LDBK, CK, LDCK, DK, LDDK, INFO )
C     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD,
     $                   LDDK, LDF, LDH, LDTU, LDTY, M, N, NCON, NMEAS,
     $                   NP
C     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), AK( LDAK, * ), B( LDB, * ),
     $                   BK( LDBK, * ), C( LDC, * ), CK( LDCK, * ),
     $                   D( LDD, * ), DK( LDDK, * ), F( LDF, * ),
     $                   H( LDH, * ), TU( LDTU, * ), TY( LDTY, * )

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the system.  N &gt;= 0.

  M       (input) INTEGER
          The column size of the matrix B.  M &gt;= 0.

  NP      (input) INTEGER
          The row size of the matrix C.  NP &gt;= 0.

  NCON    (input) INTEGER
          The number of control inputs (M2).  M &gt;= NCON &gt;= 0.
          NP-NMEAS &gt;= NCON.

  NMEAS   (input) INTEGER
          The number of measurements (NP2).  NP &gt;= NMEAS &gt;= 0.
          M-NCON &gt;= NMEAS.

  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
          The leading N-by-N part of this array must contain the
          system state matrix A.

  LDA     INTEGER
          The leading dimension of the array A.  LDA &gt;= max(1,N).

  B       (input) DOUBLE PRECISION array, dimension (LDB,M)
          The leading N-by-M part of this array must contain the
          system input matrix B. Only the submatrix
          B2 = B(:,M-M2+1:M) is used.

  LDB     INTEGER
          The leading dimension of the array B.  LDB &gt;= max(1,N).

  C       (input) DOUBLE PRECISION array, dimension (LDC,N)
          The leading NP-by-N part of this array must contain the
          system output matrix C. Only the submatrix
          C2 = C(NP-NP2+1:NP,:) is used.

  LDC     INTEGER
          The leading dimension of the array C.  LDC &gt;= max(1,NP).

  D       (input) DOUBLE PRECISION array, dimension (LDD,M)
          The leading NP-by-M part of this array must contain the
          system input/output matrix D. Only the submatrix
          D22 = D(NP-NP2+1:NP,M-M2+1:M) is used.

  LDD     INTEGER
          The leading dimension of the array D.  LDD &gt;= max(1,NP).

  F       (input) DOUBLE PRECISION array, dimension (LDF,N)
          The leading NCON-by-N part of this array must contain the
          state feedback matrix F.

  LDF     INTEGER
          The leading dimension of the array F.  LDF &gt;= max(1,NCON).

  H       (input) DOUBLE PRECISION array, dimension (LDH,NMEAS)
          The leading N-by-NMEAS part of this array must contain the
          output injection matrix H.

  LDH     INTEGER
          The leading dimension of the array H.  LDH &gt;= max(1,N).

  TU      (input) DOUBLE PRECISION array, dimension (LDTU,M2)
          The leading M2-by-M2 part of this array must contain the
          control transformation matrix TU, as obtained by the
          SLICOT Library routine SB10UD.

  LDTU    INTEGER
          The leading dimension of the array TU.  LDTU &gt;= max(1,M2).

  TY      (input) DOUBLE PRECISION array, dimension (LDTY,NP2)
          The leading NP2-by-NP2 part of this array must contain the
          measurement transformation matrix TY, as obtained by the
          SLICOT Library routine SB10UD.

  LDTY    INTEGER
          The leading dimension of the array TY.
          LDTY &gt;= max(1,NP2).

  AK      (output) DOUBLE PRECISION array, dimension (LDAK,N)
          The leading N-by-N part of this array contains the
          controller state matrix AK.

  LDAK    INTEGER
          The leading dimension of the array AK.  LDAK &gt;= max(1,N).

  BK      (output) DOUBLE PRECISION array, dimension (LDBK,NMEAS)
          The leading N-by-NMEAS part of this array contains the
          controller input matrix BK.

  LDBK    INTEGER
          The leading dimension of the array BK.  LDBK &gt;= max(1,N).

  CK      (output) DOUBLE PRECISION array, dimension (LDCK,N)
          The leading NCON-by-N part of this array contains the
          controller output matrix CK.

  LDCK    INTEGER
          The leading dimension of the array CK.
          LDCK &gt;= max(1,NCON).

  DK      (output) DOUBLE PRECISION array, dimension (LDDK,NMEAS)
          The leading NCON-by-NMEAS part of this array contains the
          controller input/output matrix DK.

  LDDK    INTEGER
          The leading dimension of the array DK.
          LDDK &gt;= max(1,NCON).

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The routine implements the formulas given in [1], [2].

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Zhou, K., Doyle, J.C., and Glover, K.
      Robust and Optimal Control.
      Prentice-Hall, Upper Saddle River, NJ, 1996.

  [2] Balas, G.J., Doyle, J.C., Glover, K., Packard, A., and
      Smith, R.
      mu-Analysis and Synthesis Toolbox.
      The MathWorks Inc., Natick, Mass., 1995.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The accuracy of the result depends on the condition numbers of the
  input and output transformations.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>