File: SB10ZP.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (156 lines) | stat: -rw-r--r-- 5,413 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
<HTML>
<HEAD><TITLE>SB10ZP - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="SB10ZP">SB10ZP</A></H2>
<H3>
Transforming a SISO system into a stable and minimum phase one
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To transform a SISO (single-input single-output) system [A,B;C,D]
  by mirroring its unstable poles and zeros in the boundary of the
  stability domain, thus preserving the frequency response of the
  system, but making it stable and minimum phase. Specifically, for
  a continuous-time system, the positive real parts of its poles
  and zeros are exchanged with their negatives. Discrete-time
  systems are first converted to continuous-time systems using a
  bilinear transformation, and finally converted back.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE SB10ZP( DISCFL, N, A, LDA, B, C, D, IWORK, DWORK,
     $                   LDWORK, INFO )
C     .. Scalar Arguments ..
      INTEGER            DISCFL, INFO, LDA, LDWORK, N
C     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   A( LDA, * ), B( * ), C( * ), D( * ), DWORK( * )

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  DISCFL  (input) INTEGER
          Indicates the type of the system, as follows:
          = 0: continuous-time system;
          = 1: discrete-time system.

  N       (input/output) INTEGER
          On entry, the order of the original system.  N &gt;= 0.
          On exit, the order of the transformed, minimal system.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N part of this array must
          contain the original system matrix A.
          On exit, the leading N-by-N part of this array contains
          the transformed matrix A, in an upper Hessenberg form.

  LDA     INTEGER
          The leading dimension of the array A.  LDA &gt;= MAX(1,N).

  B       (input/output) DOUBLE PRECISION array, dimension (N)
          On entry, this array must contain the original system
          vector B.
          On exit, this array contains the transformed vector B.

  C       (input/output) DOUBLE PRECISION array, dimension (N)
          On entry, this array must contain the original system
          vector C.
          On exit, this array contains the transformed vector C.
          The first N-1 elements are zero (for the exit value of N).

  D       (input/output) DOUBLE PRECISION array, dimension (1)
          On entry, this array must contain the original system
          scalar D.
          On exit, this array contains the transformed scalar D.

</PRE>
<B>Workspace</B>
<PRE>
  IWORK   INTEGER array, dimension (max(2,N+1))

  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) returns the optimal value
          of LDWORK.

  LDWORK  INTEGER
          The length of the array DWORK.
          LDWORK &gt;= max(N*N + 5*N, 6*N + 1 + min(1,N)).
          For optimum performance LDWORK should be larger.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = 1:  if the discrete --&gt; continuous transformation cannot
                be made;
          = 2:  if the system poles cannot be found;
          = 3:  if the inverse system cannot be found, i.e., D is
                (close to) zero;
          = 4:  if the system zeros cannot be found;
          = 5:  if the state-space representation of the new
                transfer function T(s) cannot be found;
          = 6:  if the continuous --&gt; discrete transformation cannot
                be made.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  First, if the system is discrete-time, it is transformed to
  continuous-time using alpha = beta = 1 in the bilinear
  transformation implemented in the SLICOT routine AB04MD.
  Then the eigenvalues of A, i.e., the system poles, are found.
  Then, the inverse of the original system is found and its poles,
  i.e., the system zeros, are evaluated.
  The obtained system poles Pi and zeros Zi are checked and if a
  positive real part is detected, it is exchanged by -Pi or -Zi.
  Then the polynomial coefficients of the transfer function
  T(s) = Q(s)/P(s) are found.
  The state-space representation of T(s) is then obtained.
  The system matrices B, C, D are scaled so that the transformed
  system has the same system gain as the original system.
  If the original system is discrete-time, then the result (which is
  continuous-time) is converted back to discrete-time.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>