1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
|
<HTML>
<HEAD><TITLE>SB16AD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="SB16AD">SB16AD</A></H2>
<H3>
Stability/performance enforcing frequency-weighted controller reduction
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute a reduced order controller (Acr,Bcr,Ccr,Dcr) for an
original state-space controller representation (Ac,Bc,Cc,Dc) by
using the frequency-weighted square-root or balancing-free
square-root Balance & Truncate (B&T) or Singular Perturbation
Approximation (SPA) model reduction methods. The algorithm tries
to minimize the norm of the frequency-weighted error
||V*(K-Kr)*W||
where K and Kr are the transfer-function matrices of the original
and reduced order controllers, respectively. V and W are special
frequency-weighting transfer-function matrices constructed
to enforce closed-loop stability and/or closed-loop performance.
If G is the transfer-function matrix of the open-loop system, then
the following weightings V and W can be used:
-1
(a) V = (I-G*K) *G, W = I - to enforce closed-loop stability;
-1
(b) V = I, W = (I-G*K) *G - to enforce closed-loop stability;
-1 -1
(c) V = (I-G*K) *G, W = (I-G*K) - to enforce closed-loop
stability and performance.
G has the state space representation (A,B,C,D).
If K is unstable, only the ALPHA-stable part of K is reduced.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE SB16AD( DICO, JOBC, JOBO, JOBMR, WEIGHT, EQUIL, ORDSEL,
$ N, M, P, NC, NCR, ALPHA, A, LDA, B, LDB,
$ C, LDC, D, LDD, AC, LDAC, BC, LDBC, CC, LDCC,
$ DC, LDDC, NCS, HSVC, TOL1, TOL2, IWORK, DWORK,
$ LDWORK, IWARN, INFO )
C .. Scalar Arguments ..
CHARACTER DICO, EQUIL, JOBC, JOBO, JOBMR, ORDSEL, WEIGHT
INTEGER INFO, IWARN, LDA, LDAC, LDB, LDBC, LDC, LDCC,
$ LDD, LDDC, LDWORK, M, N, NC, NCR, NCS, P
DOUBLE PRECISION ALPHA, TOL1, TOL2
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), AC(LDAC,*), B(LDB,*), BC(LDBC,*),
$ C(LDC,*), CC(LDCC,*), D(LDD,*), DC(LDDC,*),
$ DWORK(*), HSVC(*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
DICO CHARACTER*1
Specifies the type of the original controller as follows:
= 'C': continuous-time controller;
= 'D': discrete-time controller.
JOBC CHARACTER*1
Specifies the choice of frequency-weighted controllability
Grammian as follows:
= 'S': choice corresponding to standard Enns' method [1];
= 'E': choice corresponding to the stability enhanced
modified Enns' method of [2].
JOBO CHARACTER*1
Specifies the choice of frequency-weighted observability
Grammian as follows:
= 'S': choice corresponding to standard Enns' method [1];
= 'E': choice corresponding to the stability enhanced
modified combination method of [2].
JOBMR CHARACTER*1
Specifies the model reduction approach to be used
as follows:
= 'B': use the square-root B&T method;
= 'F': use the balancing-free square-root B&T method;
= 'S': use the square-root SPA method;
= 'P': use the balancing-free square-root SPA method.
WEIGHT CHARACTER*1
Specifies the type of frequency-weighting, as follows:
= 'N': no weightings are used (V = I, W = I);
= 'O': stability enforcing left (output) weighting
-1
V = (I-G*K) *G is used (W = I);
= 'I': stability enforcing right (input) weighting
-1
W = (I-G*K) *G is used (V = I);
= 'P': stability and performance enforcing weightings
-1 -1
V = (I-G*K) *G , W = (I-G*K) are used.
EQUIL CHARACTER*1
Specifies whether the user wishes to preliminarily
equilibrate the triplets (A,B,C) and (Ac,Bc,Cc) as
follows:
= 'S': perform equilibration (scaling);
= 'N': do not perform equilibration.
ORDSEL CHARACTER*1
Specifies the order selection method as follows:
= 'F': the resulting order NCR is fixed;
= 'A': the resulting order NCR is automatically
determined on basis of the given tolerance TOL1.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the open-loop system state-space
representation, i.e., the order of the matrix A. N >= 0.
M (input) INTEGER
The number of system inputs. M >= 0.
P (input) INTEGER
The number of system outputs. P >= 0.
NC (input) INTEGER
The order of the controller state-space representation,
i.e., the order of the matrix AC. NC >= 0.
NCR (input/output) INTEGER
On entry with ORDSEL = 'F', NCR is the desired order of
the resulting reduced order controller. 0 <= NCR <= NC.
On exit, if INFO = 0, NCR is the order of the resulting
reduced order controller. For a controller with NCU
ALPHA-unstable eigenvalues and NCS ALPHA-stable
eigenvalues (NCU+NCS = NC), NCR is set as follows:
if ORDSEL = 'F', NCR is equal to
NCU+MIN(MAX(0,NCR-NCU),NCMIN), where NCR is the desired
order on entry, NCMIN is the number of frequency-weighted
Hankel singular values greater than NCS*EPS*S1, EPS is the
machine precision (see LAPACK Library Routine DLAMCH) and
S1 is the largest Hankel singular value (computed in
HSVC(1)); NCR can be further reduced to ensure
HSVC(NCR-NCU) > HSVC(NCR+1-NCU);
if ORDSEL = 'A', NCR is the sum of NCU and the number of
Hankel singular values greater than MAX(TOL1,NCS*EPS*S1).
ALPHA (input) DOUBLE PRECISION
Specifies the ALPHA-stability boundary for the eigenvalues
of the state dynamics matrix AC. For a continuous-time
controller (DICO = 'C'), ALPHA <= 0 is the boundary value
for the real parts of eigenvalues; for a discrete-time
controller (DICO = 'D'), 0 <= ALPHA <= 1 represents the
boundary value for the moduli of eigenvalues.
The ALPHA-stability domain does not include the boundary.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading N-by-N part of this array must
contain the state dynamics matrix A of the open-loop
system.
On exit, if INFO = 0 and EQUIL = 'S', the leading N-by-N
part of this array contains the scaled state dynamics
matrix of the open-loop system.
If EQUIL = 'N', this array is unchanged on exit.
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
On entry, the leading N-by-M part of this array must
contain the input/state matrix B of the open-loop system.
On exit, if INFO = 0 and EQUIL = 'S', the leading N-by-M
part of this array contains the scaled input/state matrix
of the open-loop system.
If EQUIL = 'N', this array is unchanged on exit.
LDB INTEGER
The leading dimension of array B. LDB >= MAX(1,N).
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the leading P-by-N part of this array must
contain the state/output matrix C of the open-loop system.
On exit, if INFO = 0 and EQUIL = 'S', the leading P-by-N
part of this array contains the scaled state/output matrix
of the open-loop system.
If EQUIL = 'N', this array is unchanged on exit.
LDC INTEGER
The leading dimension of array C. LDC >= MAX(1,P).
D (input) DOUBLE PRECISION array, dimension (LDD,M)
The leading P-by-M part of this array must contain the
input/output matrix D of the open-loop system.
LDD INTEGER
The leading dimension of array D. LDD >= MAX(1,P).
AC (input/output) DOUBLE PRECISION array, dimension (LDAC,NC)
On entry, the leading NC-by-NC part of this array must
contain the state dynamics matrix Ac of the original
controller.
On exit, if INFO = 0, the leading NCR-by-NCR part of this
array contains the state dynamics matrix Acr of the
reduced controller. The resulting Ac has a
block-diagonal form with two blocks.
For a system with NCU ALPHA-unstable eigenvalues and
NCS ALPHA-stable eigenvalues (NCU+NCS = NC), the leading
NCU-by-NCU block contains the unreduced part of Ac
corresponding to the ALPHA-unstable eigenvalues.
The trailing (NCR+NCS-NC)-by-(NCR+NCS-NC) block contains
the reduced part of Ac corresponding to ALPHA-stable
eigenvalues.
LDAC INTEGER
The leading dimension of array AC. LDAC >= MAX(1,NC).
BC (input/output) DOUBLE PRECISION array, dimension (LDBC,P)
On entry, the leading NC-by-P part of this array must
contain the input/state matrix Bc of the original
controller.
On exit, if INFO = 0, the leading NCR-by-P part of this
array contains the input/state matrix Bcr of the reduced
controller.
LDBC INTEGER
The leading dimension of array BC. LDBC >= MAX(1,NC).
CC (input/output) DOUBLE PRECISION array, dimension (LDCC,NC)
On entry, the leading M-by-NC part of this array must
contain the state/output matrix Cc of the original
controller.
On exit, if INFO = 0, the leading M-by-NCR part of this
array contains the state/output matrix Ccr of the reduced
controller.
LDCC INTEGER
The leading dimension of array CC. LDCC >= MAX(1,M).
DC (input/output) DOUBLE PRECISION array, dimension (LDDC,P)
On entry, the leading M-by-P part of this array must
contain the input/output matrix Dc of the original
controller.
On exit, if INFO = 0, the leading M-by-P part of this
array contains the input/output matrix Dcr of the reduced
controller.
LDDC INTEGER
The leading dimension of array DC. LDDC >= MAX(1,M).
NCS (output) INTEGER
The dimension of the ALPHA-stable part of the controller.
HSVC (output) DOUBLE PRECISION array, dimension (NC)
If INFO = 0, the leading NCS elements of this array
contain the frequency-weighted Hankel singular values,
ordered decreasingly, of the ALPHA-stable part of the
controller.
</PRE>
<B>Tolerances</B>
<PRE>
TOL1 DOUBLE PRECISION
If ORDSEL = 'A', TOL1 contains the tolerance for
determining the order of the reduced controller.
For model reduction, the recommended value is
TOL1 = c*S1, where c is a constant in the
interval [0.00001,0.001], and S1 is the largest
frequency-weighted Hankel singular value of the
ALPHA-stable part of the original controller
(computed in HSVC(1)).
If TOL1 <= 0 on entry, the used default value is
TOL1 = NCS*EPS*S1, where NCS is the number of
ALPHA-stable eigenvalues of Ac and EPS is the machine
precision (see LAPACK Library Routine DLAMCH).
If ORDSEL = 'F', the value of TOL1 is ignored.
TOL2 DOUBLE PRECISION
The tolerance for determining the order of a minimal
realization of the ALPHA-stable part of the given
controller. The recommended value is TOL2 = NCS*EPS*S1.
This value is used by default if TOL2 <= 0 on entry.
If TOL2 > 0 and ORDSEL = 'A', then TOL2 <= TOL1.
</PRE>
<B>Workspace</B>
<PRE>
IWORK INTEGER array, dimension (MAX(1,LIWRK1,LIWRK2))
LIWRK1 = 0, if JOBMR = 'B';
LIWRK1 = NC, if JOBMR = 'F';
LIWRK1 = 2*NC, if JOBMR = 'S' or 'P';
LIWRK2 = 0, if WEIGHT = 'N';
LIWRK2 = 2*(M+P), if WEIGHT = 'O', 'I', or 'P'.
On exit, if INFO = 0, IWORK(1) contains NCMIN, the order
of the computed minimal realization of the stable part of
the controller.
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) returns the optimal value
of LDWORK.
LDWORK INTEGER
The length of the array DWORK.
LDWORK >= 2*NC*NC + MAX( 1, LFREQ, LSQRED ),
where
LFREQ = (N+NC)*(N+NC+2*M+2*P)+
MAX((N+NC)*(N+NC+MAX(N+NC,M,P)+7), (M+P)*(M+P+4))
if WEIGHT = 'I' or 'O' or 'P';
LFREQ = NC*(MAX(M,P)+5) if WEIGHT = 'N' and EQUIL = 'N';
LFREQ = MAX(N,NC*(MAX(M,P)+5)) if WEIGHT = 'N' and
EQUIL = 'S';
LSQRED = MAX( 1, 2*NC*NC+5*NC );
For optimum performance LDWORK should be larger.
</PRE>
<B>Warning Indicator</B>
<PRE>
IWARN INTEGER
= 0: no warning;
= 1: with ORDSEL = 'F', the selected order NCR is greater
than NSMIN, the sum of the order of the
ALPHA-unstable part and the order of a minimal
realization of the ALPHA-stable part of the given
controller; in this case, the resulting NCR is set
equal to NSMIN;
= 2: with ORDSEL = 'F', the selected order NCR
corresponds to repeated singular values for the
ALPHA-stable part of the controller, which are
neither all included nor all excluded from the
reduced model; in this case, the resulting NCR is
automatically decreased to exclude all repeated
singular values;
= 3: with ORDSEL = 'F', the selected order NCR is less
than the order of the ALPHA-unstable part of the
given controller. In this case NCR is set equal to
the order of the ALPHA-unstable part.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: the closed-loop system is not well-posed;
its feedthrough matrix is (numerically) singular;
= 2: the computation of the real Schur form of the
closed-loop state matrix failed;
= 3: the closed-loop state matrix is not stable;
= 4: the solution of a symmetric eigenproblem failed;
= 5: the computation of the ordered real Schur form of Ac
failed;
= 6: the separation of the ALPHA-stable/unstable
diagonal blocks failed because of very close
eigenvalues;
= 7: the computation of Hankel singular values failed.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
Let K be the transfer-function matrix of the original linear
controller
d[xc(t)] = Ac*xc(t) + Bc*y(t)
u(t) = Cc*xc(t) + Dc*y(t), (1)
where d[xc(t)] is dxc(t)/dt for a continuous-time system and
xc(t+1) for a discrete-time system. The subroutine SB16AD
determines the matrices of a reduced order controller
d[z(t)] = Acr*z(t) + Bcr*y(t)
u(t) = Ccr*z(t) + Dcr*y(t), (2)
such that the corresponding transfer-function matrix Kr minimizes
the norm of the frequency-weighted error
V*(K-Kr)*W, (3)
where V and W are special stable transfer-function matrices
chosen to enforce stability and/or performance of the closed-loop
system [3] (see description of the parameter WEIGHT).
The following procedure is used to reduce K in conjunction
with the frequency-weighted balancing approach of [2]
(see also [3]):
1) Decompose additively K, of order NC, as
K = K1 + K2,
such that K1 has only ALPHA-stable poles and K2, of order NCU,
has only ALPHA-unstable poles.
2) Compute for K1 a B&T or SPA frequency-weighted approximation
K1r of order NCR-NCU using the frequency-weighted balancing
approach of [1] in conjunction with accuracy enhancing
techniques specified by the parameter JOBMR.
3) Assemble the reduced model Kr as
Kr = K1r + K2.
For the reduction of the ALPHA-stable part, several accuracy
enhancing techniques can be employed (see [2] for details).
If JOBMR = 'B', the square-root B&T method of [1] is used.
If JOBMR = 'F', the balancing-free square-root version of the
B&T method [1] is used.
If JOBMR = 'S', the square-root version of the SPA method [2,3]
is used.
If JOBMR = 'P', the balancing-free square-root version of the
SPA method [2,3] is used.
For each of these methods, two left and right truncation matrices
are determined using the Cholesky factors of an input
frequency-weighted controllability Grammian P and an output
frequency-weighted observability Grammian Q.
P and Q are determined as the leading NC-by-NC diagonal blocks
of the controllability Grammian of K*W and of the
observability Grammian of V*K. Special techniques developed in [2]
are used to compute the Cholesky factors of P and Q directly
(see also SLICOT Library routine SB16AY).
The frequency-weighted Hankel singular values HSVC(1), ....,
HSVC(NC) are computed as the square roots of the eigenvalues
of the product P*Q.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Enns, D.
Model reduction with balanced realizations: An error bound
and a frequency weighted generalization.
Proc. 23-th CDC, Las Vegas, pp. 127-132, 1984.
[2] Varga, A. and Anderson, B.D.O.
Square-root balancing-free methods for frequency-weighted
balancing related model reduction.
(report in preparation)
[3] Anderson, B.D.O and Liu, Y.
Controller reduction: concepts and approaches.
IEEE Trans. Autom. Control, Vol. 34, pp. 802-812, 1989.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The implemented methods rely on accuracy enhancing square-root
techniques.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* SB16AD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX, MMAX, PMAX, NCMAX
PARAMETER ( NMAX = 20, MMAX = 20, PMAX = 20,
$ NCMAX = 20 )
INTEGER MPMAX, NNCMAX
PARAMETER ( MPMAX = MMAX + PMAX, NNCMAX = NMAX + NCMAX )
INTEGER LDA, LDB, LDC, LDD, LDAC, LDBC, LDCC, LDDC
PARAMETER ( LDA = NMAX, LDB = NMAX, LDC = PMAX,
$ LDD = PMAX, LDAC = NCMAX, LDBC = NCMAX,
$ LDCC = PMAX, LDDC = PMAX )
INTEGER LIWORK
PARAMETER ( LIWORK = 2*MAX( NCMAX, MPMAX ) )
INTEGER LDWORK
PARAMETER ( LDWORK = 2*NCMAX*NCMAX +
$ NNCMAX*( NNCMAX + 2*MPMAX ) +
$ MAX( NNCMAX*( NNCMAX +
$ MAX( NNCMAX, MMAX, PMAX ) + 7 ),
$ MPMAX*( MPMAX + 4 ) ) )
* .. Local Scalars ..
DOUBLE PRECISION ALPHA, TOL1, TOL2
INTEGER I, INFO, IWARN, J, M, N, NCR, NCS, NC, P
CHARACTER*1 DICO, EQUIL, JOBC, JOBO, JOBMR, ORDSEL, WEIGHT
* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,NMAX),
$ D(LDD,MMAX), DWORK(LDWORK), HSVC(NMAX),
$ AC(LDAC,NCMAX), BC(LDBC,PMAX), CC(LDCC,NMAX),
$ DC(LDDC,PMAX)
INTEGER IWORK(LIWORK)
* .. External Subroutines ..
EXTERNAL SB16AD
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, M, P, NC, NCR, ALPHA, TOL1, TOL2, DICO,
$ JOBC, JOBO, JOBMR, WEIGHT, EQUIL, ORDSEL
IF( N.LE.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99990 ) N
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
IF( M.LE.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99989 ) M
ELSE
READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1, N )
IF( P.GT.PMAX ) THEN
WRITE ( NOUT, FMT = 99988 ) P
ELSE
READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P )
READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,P )
IF( NC.LT.0 .OR. NC.GT.NCMAX ) THEN
WRITE ( NOUT, FMT = 99986 ) NC
ELSE
IF( NC.GT.0 ) THEN
READ ( NIN, FMT = * )
$ ( ( AC(I,J), J = 1,NC ), I = 1,NC )
READ ( NIN, FMT = * )
$ ( ( BC(I,J), J = 1,P ), I = 1, NC )
READ ( NIN, FMT = * )
$ ( ( CC(I,J), J = 1,NC ), I = 1,M )
END IF
READ ( NIN, FMT = * )
$ ( ( DC(I,J), J = 1,P ), I = 1,M )
END IF
* Find a reduced ssr for (AC,BC,CC,DC).
CALL SB16AD( DICO, JOBC, JOBO, JOBMR, WEIGHT, EQUIL,
$ ORDSEL, N, M, P, NC, NCR, ALPHA, A, LDA,
$ B, LDB, C, LDC, D, LDD, AC, LDAC, BC, LDBC,
$ CC, LDCC, DC, LDDC, NCS, HSVC, TOL1, TOL2,
$ IWORK, DWORK, LDWORK, IWARN, INFO )
*
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
IF( IWARN.NE.0) WRITE ( NOUT, FMT = 99984 ) IWARN
WRITE ( NOUT, FMT = 99997 ) NCR
WRITE ( NOUT, FMT = 99987 )
WRITE ( NOUT, FMT = 99995 ) ( HSVC(J), J = 1, NCS )
IF( NCR.GT.0 ) WRITE ( NOUT, FMT = 99996 )
DO 20 I = 1, NCR
WRITE ( NOUT, FMT = 99995 ) ( AC(I,J), J = 1,NCR )
20 CONTINUE
IF( NCR.GT.0 ) WRITE ( NOUT, FMT = 99993 )
DO 40 I = 1, NCR
WRITE ( NOUT, FMT = 99995 ) ( BC(I,J), J = 1,P )
40 CONTINUE
IF( NCR.GT.0 ) WRITE ( NOUT, FMT = 99992 )
DO 60 I = 1, M
WRITE ( NOUT, FMT = 99995 ) ( CC(I,J), J = 1,NCR )
60 CONTINUE
WRITE ( NOUT, FMT = 99991 )
DO 70 I = 1, M
WRITE ( NOUT, FMT = 99995 ) ( DC(I,J), J = 1,P )
70 CONTINUE
END IF
END IF
END IF
END IF
STOP
*
99999 FORMAT (' SB16AD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from SB16AD = ',I2)
99997 FORMAT (/' The order of reduced controller = ',I2)
99996 FORMAT (/' The reduced controller state dynamics matrix Ac is ')
99995 FORMAT (20(1X,F8.4))
99993 FORMAT (/' The reduced controller input/state matrix Bc is ')
99992 FORMAT (/' The reduced controller state/output matrix Cc is ')
99991 FORMAT (/' The reduced controller input/output matrix Dc is ')
99990 FORMAT (/' N is out of range.',/' N = ',I5)
99989 FORMAT (/' M is out of range.',/' M = ',I5)
99988 FORMAT (/' P is out of range.',/' P = ',I5)
99987 FORMAT (/' The Hankel singular values of weighted ALPHA-stable',
$ ' part are')
99986 FORMAT (/' NC is out of range.',/' NC = ',I5)
99984 FORMAT (' IWARN on exit from SB16AD = ',I2)
END
</PRE>
<B>Program Data</B>
<PRE>
SB16AD EXAMPLE PROGRAM DATA (Continuous system)
3 1 1 3 2 0.0 0.1E0 0.0 C S S F I N F
-1. 0. 4.
0. 2. 0.
0. 0. -3.
1.
1.
1.
1. 1. 1.
0.
-26.4000 6.4023 4.3868
32.0000 0 0
0 8.0000 0
-16
0
0
9.2994 1.1624 0.1090
0
</PRE>
<B>Program Results</B>
<PRE>
SB16AD EXAMPLE PROGRAM RESULTS
The order of reduced controller = 2
The Hankel singular values of weighted ALPHA-stable part are
3.8253 0.2005
The reduced controller state dynamics matrix Ac is
9.1900 0.0000
0.0000 -34.5297
The reduced controller input/state matrix Bc is
-11.9593
86.3137
The reduced controller state/output matrix Cc is
2.8955 -1.3566
The reduced controller input/output matrix Dc is
0.0000
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|