1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
|
<HTML>
<HEAD><TITLE>SB16CD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="SB16CD">SB16CD</A></H2>
<H3>
Coprime factorization based frequency-weighted state feedback controller reduction
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute, for a given open-loop model (A,B,C,D), and for
given state feedback gain F and full observer gain G,
such that A+B*F and A+G*C are stable, a reduced order
controller model (Ac,Bc,Cc) using a coprime factorization
based controller reduction approach. For reduction of
coprime factors, a stability enforcing frequency-weighted
model reduction is performed using either the square-root or
the balancing-free square-root versions of the Balance & Truncate
(B&T) model reduction method.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE SB16CD( DICO, JOBD, JOBMR, JOBCF, ORDSEL, N, M, P, NCR,
$ A, LDA, B, LDB, C, LDC, D, LDD, F, LDF, G, LDG,
$ HSV, TOL, IWORK, DWORK, LDWORK, IWARN, INFO )
C .. Scalar Arguments ..
CHARACTER DICO, JOBCF, JOBD, JOBMR, ORDSEL
INTEGER INFO, IWARN, LDA, LDB, LDC, LDD,
$ LDF, LDG, LDWORK, M, N, NCR, P
DOUBLE PRECISION TOL
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
$ DWORK(*), F(LDF,*), G(LDG,*), HSV(*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
DICO CHARACTER*1
Specifies the type of the open-loop system as follows:
= 'C': continuous-time system;
= 'D': discrete-time system.
JOBD CHARACTER*1
Specifies whether or not a non-zero matrix D appears
in the given state space model, as follows:
= 'D': D is present;
= 'Z': D is assumed a zero matrix.
JOBMR CHARACTER*1
Specifies the model reduction approach to be used
as follows:
= 'B': use the square-root B&T method;
= 'F': use the balancing-free square-root B&T method.
JOBCF CHARACTER*1
Specifies whether left or right coprime factorization
of the controller is to be used as follows:
= 'L': use left coprime factorization;
= 'R': use right coprime factorization.
ORDSEL CHARACTER*1
Specifies the order selection method as follows:
= 'F': the resulting controller order NCR is fixed;
= 'A': the resulting controller order NCR is
automatically determined on basis of the given
tolerance TOL.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the original state-space representation, i.e.
the order of the matrix A. N >= 0.
N also represents the order of the original state-feedback
controller.
M (input) INTEGER
The number of system inputs. M >= 0.
P (input) INTEGER
The number of system outputs. P >= 0.
NCR (input/output) INTEGER
On entry with ORDSEL = 'F', NCR is the desired order of
the resulting reduced order controller. 0 <= NCR <= N.
On exit, if INFO = 0, NCR is the order of the resulting
reduced order controller. NCR is set as follows:
if ORDSEL = 'F', NCR is equal to MIN(NCR,NCRMIN), where
NCR is the desired order on entry, and NCRMIN is the
number of Hankel-singular values greater than N*EPS*S1,
where EPS is the machine precision (see LAPACK Library
Routine DLAMCH) and S1 is the largest Hankel singular
value (computed in HSV(1)); NCR can be further reduced
to ensure HSV(NCR) > HSV(NCR+1);
if ORDSEL = 'A', NCR is equal to the number of Hankel
singular values greater than MAX(TOL,N*EPS*S1).
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading N-by-N part of this array must
contain the original state dynamics matrix A.
On exit, if INFO = 0, the leading NCR-by-NCR part of this
array contains the state dynamics matrix Ac of the reduced
controller.
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
On entry, the leading N-by-M part of this array must
contain the open-loop system input/state matrix B.
On exit, this array is overwritten with a NCR-by-M
B&T approximation of the matrix B.
LDB INTEGER
The leading dimension of array B. LDB >= MAX(1,N).
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the leading P-by-N part of this array must
contain the open-loop system state/output matrix C.
On exit, this array is overwritten with a P-by-NCR
B&T approximation of the matrix C.
LDC INTEGER
The leading dimension of array C. LDC >= MAX(1,P).
D (input) DOUBLE PRECISION array, dimension (LDD,M)
On entry, if JOBD = 'D', the leading P-by-M part of this
array must contain the system direct input/output
transmission matrix D.
The array D is not referenced if JOBD = 'Z'.
LDD INTEGER
The leading dimension of array D.
LDD >= MAX(1,P), if JOBD = 'D';
LDD >= 1, if JOBD = 'Z'.
F (input/output) DOUBLE PRECISION array, dimension (LDF,N)
On entry, the leading M-by-N part of this array must
contain a stabilizing state feedback matrix.
On exit, if INFO = 0, the leading M-by-NCR part of this
array contains the output/state matrix Cc of the reduced
controller.
LDF INTEGER
The leading dimension of array F. LDF >= MAX(1,M).
G (input/output) DOUBLE PRECISION array, dimension (LDG,P)
On entry, the leading N-by-P part of this array must
contain a stabilizing observer gain matrix.
On exit, if INFO = 0, the leading NCR-by-P part of this
array contains the input/state matrix Bc of the reduced
controller.
LDG INTEGER
The leading dimension of array G. LDG >= MAX(1,N).
HSV (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, HSV contains the N frequency-weighted
Hankel singular values ordered decreasingly (see METHOD).
</PRE>
<B>Tolerances</B>
<PRE>
TOL DOUBLE PRECISION
If ORDSEL = 'A', TOL contains the tolerance for
determining the order of reduced controller.
The recommended value is TOL = c*S1, where c is a constant
in the interval [0.00001,0.001], and S1 is the largest
Hankel singular value (computed in HSV(1)).
The value TOL = N*EPS*S1 is used by default if
TOL <= 0 on entry, where EPS is the machine precision
(see LAPACK Library Routine DLAMCH).
If ORDSEL = 'F', the value of TOL is ignored.
</PRE>
<B>Workspace</B>
<PRE>
IWORK INTEGER array, dimension (LIWORK)
LIWORK = 0, if JOBMR = 'B';
LIWORK = N, if JOBMR = 'F'.
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) returns the optimal value
of LDWORK.
LDWORK INTEGER
The length of the array DWORK.
LDWORK >= 2*N*N + MAX( 1, 2*N*N + 5*N, N*MAX(M,P),
N*(N + MAX(N,MP) + MIN(N,MP) + 6)),
where MP = M, if JOBCF = 'L';
MP = P, if JOBCF = 'R'.
For optimum performance LDWORK should be larger.
</PRE>
<B>Warning Indicator</B>
<PRE>
IWARN INTEGER
= 0: no warning;
= 1: with ORDSEL = 'F', the selected order NCR is
greater than the order of a minimal realization
of the controller;
= 2: with ORDSEL = 'F', the selected order NCR
corresponds to repeated singular values, which are
neither all included nor all excluded from the
reduced controller. In this case, the resulting NCR
is set automatically to the largest value such that
HSV(NCR) > HSV(NCR+1).
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: eigenvalue computation failure;
= 2: the matrix A+G*C is not stable;
= 3: the matrix A+B*F is not stable;
= 4: the Lyapunov equation for computing the
observability Grammian is (nearly) singular;
= 5: the Lyapunov equation for computing the
controllability Grammian is (nearly) singular;
= 6: the computation of Hankel singular values failed.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
Let be the linear system
d[x(t)] = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t), (1)
where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
for a discrete-time system, and let Go(d) be the open-loop
transfer-function matrix
-1
Go(d) = C*(d*I-A) *B + D .
Let F and G be the state feedback and observer gain matrices,
respectively, chosen such that A+BF and A+GC are stable matrices.
The controller has a transfer-function matrix K(d) given by
-1
K(d) = F*(d*I-A-B*F-G*C-G*D*F) *G .
The closed-loop transfer function matrix is given by
-1
Gcl(d) = Go(d)(I+K(d)Go(d)) .
K(d) can be expressed as a left coprime factorization (LCF)
-1
K(d) = M_left(d) *N_left(d),
or as a right coprime factorization (RCF)
-1
K(d) = N_right(d)*M_right(d) ,
where M_left(d), N_left(d), N_right(d), and M_right(d) are
stable transfer-function matrices.
The subroutine SB16CD determines the matrices of a reduced
controller
d[z(t)] = Ac*z(t) + Bc*y(t)
u(t) = Cc*z(t), (2)
with the transfer-function matrix Kr, using the following
stability enforcing approach proposed in [1]:
(1) If JOBCF = 'L', the frequency-weighted approximation problem
is solved
min||[M_left(d)-M_leftr(d) N_left(d)-N_leftr(d)][-Y(d)]|| ,
[ X(d)]
where
-1
G(d) = Y(d)*X(d)
is a RCF of the open-loop system transfer-function matrix.
The B&T model reduction technique is used in conjunction
with the method proposed in [1].
(2) If JOBCF = 'R', the frequency-weighted approximation problem
is solved
min || [ -U(d) V(d) ] [ N_right(d)-N_rightr(d) ] || ,
[ M_right(d)-M_rightr(d) ]
where
-1
G(d) = V(d) *U(d)
is a LCF of the open-loop system transfer-function matrix.
The B&T model reduction technique is used in conjunction
with the method proposed in [1].
If ORDSEL = 'A', the order of the controller is determined by
computing the number of Hankel singular values greater than
the given tolerance TOL. The Hankel singular values are
the square roots of the eigenvalues of the product of
two frequency-weighted Grammians P and Q, defined as follows.
If JOBCF = 'L', then P is the controllability Grammian of a system
of the form (A+BF,B,*,*), and Q is the observability Grammian of a
system of the form (A+GC,*,F,*). This choice corresponds to an
input frequency-weighted order reduction of left coprime
factors [1].
If JOBCF = 'R', then P is the controllability Grammian of a system
of the form (A+BF,G,*,*), and Q is the observability Grammian of a
system of the form (A+GC,*,C,*). This choice corresponds to an
output frequency-weighted order reduction of right coprime
factors [1].
For the computation of truncation matrices, the B&T approach
is used in conjunction with accuracy enhancing techniques.
If JOBMR = 'B', the square-root B&T method of [2,4] is used.
If JOBMR = 'F', the balancing-free square-root version of the
B&T method [3,4] is used.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Liu, Y., Anderson, B.D.O. and Ly, O.L.
Coprime factorization controller reduction with Bezout
identity induced frequency weighting.
Automatica, vol. 26, pp. 233-249, 1990.
[2] Tombs, M.S. and Postlethwaite I.
Truncated balanced realization of stable, non-minimal
state-space systems.
Int. J. Control, Vol. 46, pp. 1319-1330, 1987.
[3] Varga, A.
Efficient minimal realization procedure based on balancing.
Proc. of IMACS/IFAC Symp. MCTS, Lille, France, May 1991,
A. El Moudui, P. Borne, S. G. Tzafestas (Eds.), Vol. 2,
pp. 42-46, 1991.
[4] Varga, A.
Coprime factors model reduction method based on square-root
balancing-free techniques.
System Analysis, Modelling and Simulation, Vol. 11,
pp. 303-311, 1993.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The implemented methods rely on accuracy enhancing square-root or
balancing-free square-root techniques.
3
The algorithms require less than 30N floating point operations.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* SB16CD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX, MMAX, PMAX
PARAMETER ( NMAX = 20, MMAX = 20, PMAX = 20 )
INTEGER LDA, LDB, LDC, LDD, LDDC, LDF, LDG
PARAMETER ( LDA = NMAX, LDB = NMAX, LDC = PMAX,
$ LDD = PMAX, LDDC = MMAX, LDF = MMAX, LDG = NMAX )
INTEGER LDWORK, LIWORK, MPMAX
PARAMETER ( LIWORK = 2*NMAX, MPMAX = MAX( MMAX, PMAX ) )
PARAMETER ( LDWORK = 2*NMAX*NMAX +
$ MAX( 2*NMAX*NMAX + 5*NMAX,
$ NMAX*( NMAX + MAX( NMAX, MPMAX )
$ + MIN( NMAX, MPMAX ) + 6 ) )
$ )
CHARACTER DICO, JOBCF, JOBD, JOBMR, ORDSEL
INTEGER I, INFO, IWARN, J, M, N, NCR, P
DOUBLE PRECISION TOL
* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,NMAX),
$ D(LDD,MMAX), DWORK(LDWORK),
$ F(LDF,NMAX), G(LDG,PMAX), HSV(NMAX)
INTEGER IWORK(LIWORK)
* .. External Subroutines ..
EXTERNAL SB16CD
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, M, P, NCR, TOL,
$ DICO, JOBD, JOBMR, JOBCF, ORDSEL
IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99990 ) N
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99989 ) M
ELSE
READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1, N )
IF ( P.LT.0 .OR. P.GT.PMAX ) THEN
WRITE ( NOUT, FMT = 99988 ) P
ELSE
READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P )
READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,P )
READ ( NIN, FMT = * ) ( ( F(I,J), J = 1,N ), I = 1,M )
READ ( NIN, FMT = * ) ( ( G(I,J), J = 1,P ), I = 1,N )
* Find a reduced ssr for (A,B,C,D).
CALL SB16CD( DICO, JOBD, JOBMR, JOBCF, ORDSEL, N, M, P,
$ NCR, A, LDA, B, LDB, C, LDC, D, LDD, F, LDF,
$ G, LDG, HSV, TOL, IWORK, DWORK, LDWORK,
$ IWARN, INFO )
*
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
WRITE ( NOUT, FMT = 99997 ) NCR
WRITE ( NOUT, FMT = 99987 )
WRITE ( NOUT, FMT = 99995 ) ( HSV(J), J = 1,N )
IF( NCR.GT.0 ) WRITE ( NOUT, FMT = 99996 )
DO 20 I = 1, NCR
WRITE ( NOUT, FMT = 99995 ) ( A(I,J), J = 1,NCR )
20 CONTINUE
IF( NCR.GT.0 ) WRITE ( NOUT, FMT = 99993 )
DO 40 I = 1, NCR
WRITE ( NOUT, FMT = 99995 ) ( G(I,J), J = 1,P )
40 CONTINUE
IF( NCR.GT.0 ) WRITE ( NOUT, FMT = 99992 )
DO 60 I = 1, M
WRITE ( NOUT, FMT = 99995 ) ( F(I,J), J = 1,NCR )
60 CONTINUE
END IF
END IF
END IF
END IF
STOP
*
99999 FORMAT (' SB16CD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from SB16CD = ',I2)
99997 FORMAT (' The order of reduced controller = ',I2)
99996 FORMAT (/' The reduced controller state dynamics matrix Ac is ')
99995 FORMAT (20(1X,F8.4))
99993 FORMAT (/' The reduced controller input/state matrix Bc is ')
99992 FORMAT (/' The reduced controller state/output matrix Cc is ')
99990 FORMAT (/' N is out of range.',/' N = ',I5)
99989 FORMAT (/' M is out of range.',/' M = ',I5)
99988 FORMAT (/' P is out of range.',/' P = ',I5)
99987 FORMAT (/' The frequency-weighted Hankel singular values are:')
END
</PRE>
<B>Program Data</B>
<PRE>
SB16CD EXAMPLE PROGRAM DATA (Continuous system)
8 1 1 2 0.1E0 C D F R F
0 1.0000 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 -0.0150 0.7650 0 0 0 0
0 0 -0.7650 -0.0150 0 0 0 0
0 0 0 0 -0.0280 1.4100 0 0
0 0 0 0 -1.4100 -0.0280 0 0
0 0 0 0 0 0 -0.0400 1.850
0 0 0 0 0 0 -1.8500 -0.040
0.0260
-0.2510
0.0330
-0.8860
-4.0170
0.1450
3.6040
0.2800
-.996 -.105 0.261 .009 -.001 -.043 0.002 -0.026
0.0
4.472135954999638e-002 6.610515358414598e-001 4.698598960657579e-003 3.601363251422058e-001 1.032530880771415e-001 -3.754055214487997e-002 -4.268536964759344e-002 3.287284547842979e-002
4.108939884667451e-001
8.684600000000012e-002
3.852317308197148e-004
-3.619366874815911e-003
-8.803722876359955e-003
8.420521094001852e-003
1.234944428038507e-003
4.263205617645322e-003
</PRE>
<B>Program Results</B>
<PRE>
SB16CD EXAMPLE PROGRAM RESULTS
The order of reduced controller = 2
The frequency-weighted Hankel singular values are:
3.3073 0.7274 0.1124 0.0784 0.0242 0.0182 0.0101 0.0094
The reduced controller state dynamics matrix Ac is
-0.4334 0.4884
-0.1950 -0.1093
The reduced controller input/state matrix Bc is
-0.4231
-0.1785
The reduced controller state/output matrix Cc is
-0.0326 -0.2307
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|