1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
<HTML>
<HEAD><TITLE>TC01OD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="TC01OD">TC01OD</A></H2>
<H3>
Dual of a left/right polynomial matrix representation
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To find the dual right (left) polynomial matrix representation of
a given left (right) polynomial matrix representation, where the
right and left polynomial matrix representations are of the form
Q(s)*inv(P(s)) and inv(P(s))*Q(s) respectively.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE TC01OD( LERI, M, P, INDLIM, PCOEFF, LDPCO1, LDPCO2,
$ QCOEFF, LDQCO1, LDQCO2, INFO )
C .. Scalar Arguments ..
CHARACTER LERI
INTEGER INFO, INDLIM, LDPCO1, LDPCO2, LDQCO1, LDQCO2, M,
$ P
C .. Array Arguments ..
DOUBLE PRECISION PCOEFF(LDPCO1,LDPCO2,*), QCOEFF(LDQCO1,LDQCO2,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
LERI CHARACTER*1
Indicates whether a left or right matrix fraction is input
as follows:
= 'L': A left matrix fraction is input;
= 'R': A right matrix fraction is input.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
M (input) INTEGER
The number of system inputs. M >= 0.
P (input) INTEGER
The number of system outputs. P >= 0.
INDLIM (input) INTEGER
The highest value of K for which PCOEFF(.,.,K) and
QCOEFF(.,.,K) are to be transposed.
K = kpcoef + 1, where kpcoef is the maximum degree of the
polynomials in P(s). INDLIM >= 1.
PCOEFF (input/output) DOUBLE PRECISION array, dimension
(LDPCO1,LDPCO2,INDLIM)
If LERI = 'L' then porm = P, otherwise porm = M.
On entry, the leading porm-by-porm-by-INDLIM part of this
array must contain the coefficients of the denominator
matrix P(s).
PCOEFF(I,J,K) is the coefficient in s**(INDLIM-K) of
polynomial (I,J) of P(s), where K = 1,2,...,INDLIM.
On exit, the leading porm-by-porm-by-INDLIM part of this
array contains the coefficients of the denominator matrix
P'(s) of the dual system.
LDPCO1 INTEGER
The leading dimension of array PCOEFF.
LDPCO1 >= MAX(1,P) if LERI = 'L',
LDPCO1 >= MAX(1,M) if LERI = 'R'.
LDPCO2 INTEGER
The second dimension of array PCOEFF.
LDPCO2 >= MAX(1,P) if LERI = 'L',
LDPCO2 >= MAX(1,M) if LERI = 'R'.
QCOEFF (input/output) DOUBLE PRECISION array, dimension
(LDQCO1,LDQCO2,INDLIM)
On entry, the leading P-by-M-by-INDLIM part of this array
must contain the coefficients of the numerator matrix
Q(s).
QCOEFF(I,J,K) is the coefficient in s**(INDLIM-K) of
polynomial (I,J) of Q(s), where K = 1,2,...,INDLIM.
On exit, the leading M-by-P-by-INDLIM part of the array
contains the coefficients of the numerator matrix Q'(s)
of the dual system.
LDQCO1 INTEGER
The leading dimension of array QCOEFF.
LDQCO1 >= MAX(1,M,P).
LDQCO2 INTEGER
The second dimension of array QCOEFF.
LDQCO2 >= MAX(1,M,P).
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
If the given M-input/P-output left (right) polynomial matrix
representation has numerator matrix Q(s) and denominator matrix
P(s), its dual P-input/M-output right (left) polynomial matrix
representation simply has numerator matrix Q'(s) and denominator
matrix P'(s).
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
None.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
None.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* TC01OD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER MMAX, PMAX, INDMAX
PARAMETER ( MMAX = 20, PMAX = 20, INDMAX = 20 )
INTEGER MAXMP
PARAMETER ( MAXMP = MAX( MMAX, PMAX ) )
INTEGER LDPCO1, LDPCO2, LDQCO1, LDQCO2
PARAMETER ( LDPCO1 = MAXMP, LDPCO2 = MAXMP,
$ LDQCO1 = MAXMP, LDQCO2 = MAXMP )
* .. Local Scalars ..
INTEGER I, INDLIM, INFO, J, K, M, P, PORM
CHARACTER*1 LERI
LOGICAL LLERI
* .. Local Arrays ..
DOUBLE PRECISION PCOEFF(LDPCO1,LDPCO2,INDMAX),
$ QCOEFF(LDQCO1,LDQCO2,INDMAX)
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* .. External Subroutines ..
EXTERNAL TC01OD
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) M, P, INDLIM, LERI
LLERI = LSAME( LERI, 'L' )
IF ( M.LE.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99994 ) M
ELSE IF ( P.LE.0 .OR. P.GT.PMAX ) THEN
WRITE ( NOUT, FMT = 99993 ) P
ELSE IF ( INDLIM.LE.0 .OR. INDLIM.GT.INDMAX ) THEN
WRITE ( NOUT, FMT = 99992 ) INDLIM
ELSE
PORM = P
IF ( .NOT.LLERI ) PORM = M
READ ( NIN, FMT = * )
$ ( ( ( PCOEFF(I,J,K), K = 1,INDLIM ), J = 1,PORM ),
$ I = 1,PORM )
READ ( NIN, FMT = * )
$ ( ( ( QCOEFF(I,J,K), K = 1,INDLIM ), J = 1,M ), I = 1,P )
* Find the dual right pmr of the given left pmr.
CALL TC01OD( LERI, M, P, INDLIM, PCOEFF, LDPCO1, LDPCO2,
$ QCOEFF, LDQCO1, LDQCO2, INFO )
*
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
WRITE ( NOUT, FMT = 99997 )
DO 40 I = 1, PORM
DO 20 J = 1, PORM
WRITE ( NOUT, FMT = 99996 ) I, J,
$ ( PCOEFF(I,J,K), K = 1,INDLIM )
20 CONTINUE
40 CONTINUE
WRITE ( NOUT, FMT = 99995 )
DO 80 I = 1, M
DO 60 J = 1, P
WRITE ( NOUT, FMT = 99996 ) I, J,
$ ( QCOEFF(I,J,K), K = 1,INDLIM )
60 CONTINUE
80 CONTINUE
END IF
END IF
STOP
*
99999 FORMAT (' TC01OD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from TC01OD = ',I2)
99997 FORMAT (' The coefficients of the denominator matrix of the dual',
$ ' system are ')
99996 FORMAT (/' element (',I2,',',I2,') is ',20(1X,F6.2))
99995 FORMAT (//' The coefficients of the numerator matrix of the dual',
$ ' system are ')
99994 FORMAT (/' M is out of range.',/' M = ',I5)
99993 FORMAT (/' P is out of range.',/' P = ',I5)
99992 FORMAT (/' INDLIM is out of range.',/' INDLIM = ',I5)
END
</PRE>
<B>Program Data</B>
<PRE>
TC01OD EXAMPLE PROGRAM DATA
2 2 3 L
2.0 3.0 1.0
4.0 -1.0 -1.0
5.0 7.0 -6.0
3.0 2.0 2.0
6.0 -1.0 5.0
1.0 7.0 5.0
1.0 1.0 1.0
4.0 1.0 -1.0
</PRE>
<B>Program Results</B>
<PRE>
TC01OD EXAMPLE PROGRAM RESULTS
The coefficients of the denominator matrix of the dual system are
element ( 1, 1) is 2.00 3.00 1.00
element ( 1, 2) is 5.00 7.00 -6.00
element ( 2, 1) is 4.00 -1.00 -1.00
element ( 2, 2) is 3.00 2.00 2.00
The coefficients of the numerator matrix of the dual system are
element ( 1, 1) is 6.00 -1.00 5.00
element ( 1, 2) is 1.00 1.00 1.00
element ( 2, 1) is 1.00 7.00 5.00
element ( 2, 2) is 4.00 1.00 -1.00
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|