File: TC04AD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (399 lines) | stat: -rw-r--r-- 14,230 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
<HTML>
<HEAD><TITLE>TC04AD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="TC04AD">TC04AD</A></H2>
<H3>
State-space representation for a given left/right polynomial matrix representation
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To find a state-space representation (A,B,C,D) with the same
  transfer matrix T(s) as that of a given left or right polynomial
  matrix representation, i.e.

     C*inv(sI-A)*B + D = T(s) = inv(P(s))*Q(s) = Q(s)*inv(P(s)).

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE TC04AD( LERI, M, P, INDEX, PCOEFF, LDPCO1, LDPCO2,
     $                   QCOEFF, LDQCO1, LDQCO2, N, RCOND, A, LDA, B,
     $                   LDB, C, LDC, D, LDD, IWORK, DWORK, LDWORK,
     $                   INFO )
C     .. Scalar Arguments ..
      CHARACTER         LERI
      INTEGER           INFO, LDA, LDB, LDC, LDD, LDPCO1, LDPCO2,
     $                  LDQCO1, LDQCO2, LDWORK, M, N, P
      DOUBLE PRECISION  RCOND
C     .. Array Arguments ..
      INTEGER           INDEX(*), IWORK(*)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
     $                  DWORK(*), PCOEFF(LDPCO1,LDPCO2,*),
     $                  QCOEFF(LDQCO1,LDQCO2,*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  LERI    CHARACTER*1
          Indicates whether a left polynomial matrix representation
          or a right polynomial matrix representation is input as
          follows:
          = 'L':  A left matrix fraction is input;
          = 'R':  A right matrix fraction is input.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  M       (input) INTEGER
          The number of system inputs.  M &gt;= 0.

  P       (input) INTEGER
          The number of system outputs.  P &gt;= 0.

  INDEX   (input) INTEGER array, dimension (MAX(M,P))
          If LERI = 'L', INDEX(I), I = 1,2,...,P, must contain the
          maximum degree of the polynomials in the I-th row of the
          denominator matrix P(s) of the given left polynomial
          matrix representation.
          If LERI = 'R', INDEX(I), I = 1,2,...,M, must contain the
          maximum degree of the polynomials in the I-th column of
          the denominator matrix P(s) of the given right polynomial
          matrix representation.

  PCOEFF  (input) DOUBLE PRECISION array, dimension
          (LDPCO1,LDPCO2,kpcoef), where kpcoef = MAX(INDEX(I)) + 1.
          If LERI = 'L' then porm = P, otherwise porm = M.
          The leading porm-by-porm-by-kpcoef part of this array must
          contain the coefficients of the denominator matrix P(s).
          PCOEFF(I,J,K) is the coefficient in s**(INDEX(iorj)-K+1)
          of polynomial (I,J) of P(s), where K = 1,2,...,kpcoef; if
          LERI = 'L' then iorj = I, otherwise iorj = J.
          Thus for LERI = 'L', P(s) =
          diag(s**INDEX(I))*(PCOEFF(.,.,1)+PCOEFF(.,.,2)/s+...).
          If LERI = 'R', PCOEFF is modified by the routine but
          restored on exit.

  LDPCO1  INTEGER
          The leading dimension of array PCOEFF.
          LDPCO1 &gt;= MAX(1,P) if LERI = 'L',
          LDPCO1 &gt;= MAX(1,M) if LERI = 'R'.

  LDPCO2  INTEGER
          The second dimension of array PCOEFF.
          LDPCO2 &gt;= MAX(1,P) if LERI = 'L',
          LDPCO2 &gt;= MAX(1,M) if LERI = 'R'.

  QCOEFF  (input) DOUBLE PRECISION array, dimension
          (LDQCO1,LDQCO2,kpcoef)
          If LERI = 'L' then porp = M, otherwise porp = P.
          The leading porm-by-porp-by-kpcoef part of this array must
          contain the coefficients of the numerator matrix Q(s).
          QCOEFF(I,J,K) is defined as for PCOEFF(I,J,K).
          If LERI = 'R', QCOEFF is modified by the routine but
          restored on exit.

  LDQCO1  INTEGER
          The leading dimension of array QCOEFF.
          LDQCO1 &gt;= MAX(1,P)   if LERI = 'L',
          LDQCO1 &gt;= MAX(1,M,P) if LERI = 'R'.

  LDQCO2  INTEGER
          The second dimension of array QCOEFF.
          LDQCO2 &gt;= MAX(1,M)   if LERI = 'L',
          LDQCO2 &gt;= MAX(1,M,P) if LERI = 'R'.

  N       (output) INTEGER
          The order of the resulting state-space representation.
                       porm
          That is, N = SUM INDEX(I).
                       I=1

  RCOND   (output) DOUBLE PRECISION
          The estimated reciprocal of the condition number of the
          leading row (if LERI = 'L') or the leading column (if
          LERI = 'R') coefficient matrix of P(s).
          If RCOND is nearly zero, P(s) is nearly row or column
          non-proper.

  A       (output) DOUBLE PRECISION array, dimension (LDA,N)
          The leading N-by-N part of this array contains the state
          dynamics matrix A.

  LDA     INTEGER
          The leading dimension of array A.  LDA &gt;= MAX(1,N).

  B       (output) DOUBLE PRECISION array, dimension (LDB,MAX(M,P))
          The leading N-by-M part of this array contains the
          input/state matrix B; the remainder of the leading
          N-by-MAX(M,P) part is used as internal workspace.

  LDB     INTEGER
          The leading dimension of array B.  LDB &gt;= MAX(1,N).

  C       (output) DOUBLE PRECISION array, dimension (LDC,N)
          The leading P-by-N part of this array contains the
          state/output matrix C; the remainder of the leading
          MAX(M,P)-by-N part is used as internal workspace.

  LDC     INTEGER
          The leading dimension of array C.  LDC &gt;= MAX(1,M,P).

  D       (output) DOUBLE PRECISION array, dimension (LDD,MAX(M,P))
          The leading P-by-M part of this array contains the direct
          transmission matrix D; the remainder of the leading
          MAX(M,P)-by-MAX(M,P) part is used as internal workspace.

  LDD     INTEGER
          The leading dimension of array D.  LDD &gt;= MAX(1,M,P).

</PRE>
<B>Workspace</B>
<PRE>
  IWORK   INTEGER array, dimension (2*MAX(M,P))

  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) returns the optimal value
          of LDWORK.

  LDWORK  INTEGER
          The length of the array DWORK.
          LDWORK &gt;= MAX(1,MAX(M,P)*(MAX(M,P)+4)).
          For optimum performance LDWORK should be larger.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = 1:  if P(s) is not row (if LERI = 'L') or column
                (if LERI = 'R') proper. Consequently, no state-space
                representation is calculated.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The method for a left matrix fraction will be described here;
  right matrix fractions are dealt with by obtaining the dual left
  polynomial matrix representation and constructing an equivalent
  state-space representation for this. The first step is to check
  if the denominator matrix P(s) is row proper; if it is not then
  the routine returns with the Error Indicator (INFO) set to 1.
  Otherwise, Wolovich's Observable  Structure Theorem is used to
  construct a state-space representation (A,B,C,D) in observable
  companion form. The sizes of the blocks of matrix A and matrix C
  here are precisely the row degrees of P(s), while their
  'non-trivial' columns are given easily from its coefficients.
  Similarly, the matrix D is obtained from the leading coefficients
  of P(s) and of the numerator matrix Q(s), while matrix B is given
  by the relation Sbar(s)B = Q(s) - P(s)D, where Sbar(s) is a
  polynomial matrix whose (j,k)(th) element is given by

               j-u(k-1)-1
            ( s           , j = u(k-1)+1,u(k-1)+2,....,u(k)
  Sbar    = (
     j,k    (           0 , otherwise

          k
  u(k) = SUM d , k = 1,2,...,M and d ,d ,...,d  are the
         i=1  i                     1  2      M
  controllability indices. For convenience in solving this, C' and B
  are initially set up to contain the coefficients of P(s) and Q(s),
  respectively, stored by rows.

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Wolovich, W.A.
      Linear Multivariate Systems, (Theorem 4.3.3).
      Springer-Verlag, 1974.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>                            3
  The algorithm requires 0(N ) operations.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
*     TC04AD EXAMPLE PROGRAM TEXT
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          MMAX, PMAX, KPCMAX, NMAX
      PARAMETER        ( MMAX = 5, PMAX = 5, KPCMAX = 5, NMAX = 5 )
      INTEGER          MAXMP
      PARAMETER        ( MAXMP = MAX( MMAX, PMAX ) )
      INTEGER          LDPCO1, LDPCO2, LDQCO1, LDQCO2, LDA, LDB, LDC,
     $                 LDD
      PARAMETER        ( LDPCO1 = MAXMP, LDPCO2 = MAXMP,
     $                   LDQCO1 = MAXMP, LDQCO2 = MAXMP,
     $                   LDA = NMAX, LDB = NMAX, LDC = MAXMP,
     $                   LDD = MAXMP )
      INTEGER          LIWORK
      PARAMETER        ( LIWORK = 2*MAXMP )
      INTEGER          LDWORK
      PARAMETER        ( LDWORK = ( MAXMP )*( MAXMP+4 ) )
*     .. Local Scalars ..
      DOUBLE PRECISION RCOND
      INTEGER          I, INFO, J, K, KPCOEF, M, N, P, PORM, PORP
      CHARACTER*1      LERI
      LOGICAL          LLERI
*     .. Local Arrays ..
      DOUBLE PRECISION A(LDA,NMAX), B(LDB,MAXMP), C(LDC,NMAX),
     $                 D(LDD,MAXMP), PCOEFF(LDPCO1,LDPCO2,KPCMAX),
     $                 QCOEFF(LDQCO1,LDQCO2,KPCMAX), DWORK(LDWORK)
      INTEGER          INDEX(MAXMP), IWORK(LIWORK)
*     .. External Functions ..
      LOGICAL          LSAME
      EXTERNAL         LSAME
*     .. External Subroutines ..
      EXTERNAL         TC04AD
*     .. Intrinsic Functions ..
      INTRINSIC        MAX
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) M, P, LERI
      LLERI = LSAME( LERI, 'L' )
      IF ( M.LE.0 .OR. M.GT.MMAX ) THEN
         WRITE ( NOUT, FMT = 99991 ) M
      ELSE IF ( P.LE.0 .OR. P.GT.PMAX ) THEN
         WRITE ( NOUT, FMT = 99990 ) P
      ELSE
         PORM = P
         IF ( .NOT.LLERI ) PORM = M
         READ ( NIN, FMT = * ) ( INDEX(I), I = 1,PORM )
         PORP = M
         IF ( .NOT.LLERI ) PORP = P
         KPCOEF = 0
         DO 20 I = 1, PORM
            KPCOEF = MAX( KPCOEF, INDEX(I) )
   20    CONTINUE
         KPCOEF = KPCOEF + 1
         IF ( KPCOEF.LE.0 .OR. KPCOEF.GT.KPCMAX ) THEN
            WRITE ( NOUT, FMT = 99989 ) KPCOEF
         ELSE
            READ ( NIN, FMT = * )
     $         ( ( ( PCOEFF(I,J,K), K = 1,KPCOEF ), J = 1,PORM ),
     $                              I = 1,PORM )
            READ ( NIN, FMT = * )
     $         ( ( ( QCOEFF(I,J,K), K = 1,KPCOEF ), J = 1,PORP ),
     $                              I = 1,PORM )
*           Find a ssr of the given left pmr.
            CALL TC04AD( LERI, M, P, INDEX, PCOEFF, LDPCO1, LDPCO2,
     $                   QCOEFF, LDQCO1, LDQCO2, N, RCOND, A, LDA, B,
     $                   LDB, C, LDC, D, LDD, IWORK, DWORK, LDWORK,
     $                   INFO )
*
            IF ( INFO.NE.0 ) THEN
               WRITE ( NOUT, FMT = 99998 ) INFO
            ELSE
               WRITE ( NOUT, FMT = 99997 ) N, RCOND
               WRITE ( NOUT, FMT = 99996 )
               DO 40 I = 1, N
                  WRITE ( NOUT, FMT = 99995 ) ( A(I,J), J = 1,N )
   40          CONTINUE
               WRITE ( NOUT, FMT = 99994 )
               DO 60 I = 1, N
                  WRITE ( NOUT, FMT = 99995 ) ( B(I,J), J = 1,M )
   60          CONTINUE
               WRITE ( NOUT, FMT = 99993 )
               DO 80 I = 1, P
                  WRITE ( NOUT, FMT = 99995 ) ( C(I,J), J = 1,N )
   80          CONTINUE
               WRITE ( NOUT, FMT = 99992 )
               DO 100 I = 1, P
                  WRITE ( NOUT, FMT = 99995 ) ( D(I,J), J = 1,M )
  100          CONTINUE
            END IF
         END IF
      END IF
      STOP
*
99999 FORMAT (' TC04AD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from TC04AD = ',I2)
99997 FORMAT (' The order of the resulting state-space representation ',
     $       ' =  ',I2,//' RCOND = ',F4.2)
99996 FORMAT (/' The state dynamics matrix A is ')
99995 FORMAT (20(1X,F8.4))
99994 FORMAT (/' The input/state matrix B is ')
99993 FORMAT (/' The state/output matrix C is ')
99992 FORMAT (/' The direct transmission matrix D is ')
99991 FORMAT (/' M is out of range.',/' M = ',I5)
99990 FORMAT (/' P is out of range.',/' P = ',I5)
99989 FORMAT (/' KPCOEF is out of range.',/' KPCOEF = ',I5)
      END
</PRE>
<B>Program Data</B>
<PRE>
 TC04AD EXAMPLE PROGRAM DATA
   2     2     L
   2     2
   2.0   3.0   1.0
   4.0  -1.0  -1.0
   5.0   7.0  -6.0
   3.0   2.0   2.0
   6.0  -1.0   5.0
   1.0   7.0   5.0
   1.0   1.0   1.0
   4.0   1.0  -1.0
</PRE>
<B>Program Results</B>
<PRE>
 TC04AD EXAMPLE PROGRAM RESULTS

 The order of the resulting state-space representation  =   4

 RCOND = 0.25

 The state dynamics matrix A is 
   0.0000   0.5714   0.0000  -0.4286
   1.0000   1.0000   0.0000  -1.0000
   0.0000  -2.0000   0.0000   2.0000
   0.0000   0.7857   1.0000  -1.7143

 The input/state matrix B is 
   8.0000   3.8571
   4.0000   4.0000
  -9.0000   5.0000
   4.0000  -5.0714

 The state/output matrix C is 
   0.0000  -0.2143   0.0000   0.2857
   0.0000   0.3571   0.0000  -0.1429

 The direct transmission matrix D is 
  -1.0000   0.9286
   2.0000  -0.2143
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>