1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
<HTML>
<HEAD><TITLE>TC05AD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="TC05AD">TC05AD</A></H2>
<H3>
Frequency response of a left/right polynomial matrix representation
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To evaluate the transfer matrix T(s) of a left polynomial matrix
representation [T(s) = inv(P(s))*Q(s)] or a right polynomial
matrix representation [T(s) = Q(s)*inv(P(s))] at any specified
complex frequency s = SVAL.
This routine will calculate the standard frequency response
matrix at frequency omega if SVAL is supplied as (0.0,omega).
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE TC05AD( LERI, M, P, SVAL, INDEX, PCOEFF, LDPCO1,
$ LDPCO2, QCOEFF, LDQCO1, LDQCO2, RCOND, CFREQR,
$ LDCFRE, IWORK, DWORK, ZWORK, INFO )
C .. Scalar Arguments ..
CHARACTER LERI
INTEGER INFO, LDCFRE, LDPCO1, LDPCO2, LDQCO1, LDQCO2, M,
$ P
DOUBLE PRECISION RCOND
COMPLEX*16 SVAL
C .. Array Arguments ..
INTEGER INDEX(*), IWORK(*)
DOUBLE PRECISION DWORK(*), PCOEFF(LDPCO1,LDPCO2,*),
$ QCOEFF(LDQCO1,LDQCO2,*)
COMPLEX*16 CFREQR(LDCFRE,*), ZWORK(*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
LERI CHARACTER*1
Indicates whether a left polynomial matrix representation
or a right polynomial matrix representation is to be used
to evaluate the transfer matrix as follows:
= 'L': A left matrix fraction is input;
= 'R': A right matrix fraction is input.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
M (input) INTEGER
The number of system inputs. M >= 0.
P (input) INTEGER
The number of system outputs. P >= 0.
SVAL (input) COMPLEX*16
The frequency at which the transfer matrix or the
frequency respose matrix is to be evaluated.
For a standard frequency response set the real part
of SVAL to zero.
INDEX (input) INTEGER array, dimension (MAX(M,P))
If LERI = 'L', INDEX(I), I = 1,2,...,P, must contain the
maximum degree of the polynomials in the I-th row of the
denominator matrix P(s) of the given left polynomial
matrix representation.
If LERI = 'R', INDEX(I), I = 1,2,...,M, must contain the
maximum degree of the polynomials in the I-th column of
the denominator matrix P(s) of the given right polynomial
matrix representation.
PCOEFF (input) DOUBLE PRECISION array, dimension
(LDPCO1,LDPCO2,kpcoef), where kpcoef = MAX(INDEX(I)) + 1.
If LERI = 'L' then porm = P, otherwise porm = M.
The leading porm-by-porm-by-kpcoef part of this array must
contain the coefficients of the denominator matrix P(s).
PCOEFF(I,J,K) is the coefficient in s**(INDEX(iorj)-K+1)
of polynomial (I,J) of P(s), where K = 1,2,...,kpcoef; if
LERI = 'L' then iorj = I, otherwise iorj = J.
Thus for LERI = 'L', P(s) =
diag(s**INDEX(I))*(PCOEFF(.,.,1)+PCOEFF(.,.,2)/s+...).
If LERI = 'R', PCOEFF is modified by the routine but
restored on exit.
LDPCO1 INTEGER
The leading dimension of array PCOEFF.
LDPCO1 >= MAX(1,P) if LERI = 'L',
LDPCO1 >= MAX(1,M) if LERI = 'R'.
LDPCO2 INTEGER
The second dimension of array PCOEFF.
LDPCO2 >= MAX(1,P) if LERI = 'L',
LDPCO2 >= MAX(1,M) if LERI = 'R'.
QCOEFF (input) DOUBLE PRECISION array, dimension
(LDQCO1,LDQCO2,kpcoef)
If LERI = 'L' then porp = M, otherwise porp = P.
The leading porm-by-porp-by-kpcoef part of this array must
contain the coefficients of the numerator matrix Q(s).
QCOEFF(I,J,K) is defined as for PCOEFF(I,J,K).
If LERI = 'R', QCOEFF is modified by the routine but
restored on exit.
LDQCO1 INTEGER
The leading dimension of array QCOEFF.
LDQCO1 >= MAX(1,P) if LERI = 'L',
LDQCO1 >= MAX(1,M,P) if LERI = 'R'.
LDQCO2 INTEGER
The second dimension of array QCOEFF.
LDQCO2 >= MAX(1,M) if LERI = 'L',
LDQCO2 >= MAX(1,M,P) if LERI = 'R'.
RCOND (output) DOUBLE PRECISION
The estimated reciprocal of the condition number of the
denominator matrix P(SVAL).
If RCOND is nearly zero, SVAL is approximately a system
pole.
CFREQR (output) COMPLEX*16 array, dimension (LDCFRE,MAX(M,P))
The leading porm-by-porp part of this array contains the
frequency response matrix T(SVAL).
LDCFRE INTEGER
The leading dimension of array CFREQR.
LDCFRE >= MAX(1,P) if LERI = 'L',
LDCFRE >= MAX(1,M,P) if LERI = 'R'.
</PRE>
<B>Workspace</B>
<PRE>
IWORK INTEGER array, dimension (liwork)
where liwork = P, if LERI = 'L',
liwork = M, if LERI = 'R'.
DWORK DOUBLE PRECISION array, dimension (ldwork)
where ldwork = 2*P, if LERI = 'L',
ldwork = 2*M, if LERI = 'R'.
ZWORK COMPLEX*16 array, dimension (lzwork),
where lzwork = P*(P+2), if LERI = 'L',
lzwork = M*(M+2), if LERI = 'R'.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: if P(SVAL) is exactly or nearly singular;
no frequency response is calculated.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The method for a left matrix fraction will be described here;
right matrix fractions are dealt with by obtaining the dual left
fraction and calculating its frequency response (see SLICOT
Library routine TC01OD). The first step is to calculate the
complex value P(SVAL) of the denominator matrix P(s) at the
desired frequency SVAL. If P(SVAL) is approximately singular,
SVAL is approximately a pole of this system and so the frequency
response matrix T(SVAL) is not calculated; in this case, the
routine returns with the Error Indicator (INFO) set to 1.
Otherwise, the complex value Q(SVAL) of the numerator matrix Q(s)
at frequency SVAL is calculated in a similar way to P(SVAL), and
the desired response matrix T(SVAL) = inv(P(SVAL))*Q(SVAL) is
found by solving the corresponding system of complex linear
equations.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
None
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE> 3
The algorithm requires 0(N ) operations.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* TC05AD EXAMPLE PROGRAM TEXT.
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER MMAX, PMAX, KPCMAX
PARAMETER ( MMAX = 20, PMAX = 20, KPCMAX = 20 )
INTEGER MAXMP
PARAMETER ( MAXMP = MAX( MMAX, PMAX ) )
INTEGER LDCFRE, LDPCO1, LDPCO2, LDQCO1, LDQCO2
PARAMETER ( LDCFRE = MAXMP, LDPCO1 = MAXMP,
$ LDPCO2 = MAXMP, LDQCO1 = MAXMP,
$ LDQCO2 = MAXMP )
INTEGER LDWORK
PARAMETER ( LDWORK = 2*MAXMP )
INTEGER LZWORK
PARAMETER ( LZWORK = ( MAXMP )*( MAXMP+2 ) )
* .. Local Scalars ..
COMPLEX*16 SVAL
DOUBLE PRECISION RCOND
INTEGER I, INFO, J, K, KPCOEF, M, P, PORM, PORP
CHARACTER*1 LERI
LOGICAL LLERI
* .. Local Arrays ..
COMPLEX*16 CFREQR(LDCFRE,MAXMP), ZWORK(LZWORK)
DOUBLE PRECISION DWORK(LDWORK), PCOEFF(LDPCO1,LDPCO2,KPCMAX),
$ QCOEFF(LDQCO1,LDQCO2,KPCMAX)
INTEGER INDEX(MAXMP), IWORK(MAXMP)
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* .. External Subroutines ..
EXTERNAL TC05AD
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) M, P, SVAL, LERI
LLERI = LSAME( LERI, 'L' )
IF ( M.LE.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99995 ) M
ELSE IF ( P.LE.0 .OR. P.GT.PMAX ) THEN
WRITE ( NOUT, FMT = 99994 ) P
ELSE
PORM = P
IF ( .NOT.LLERI ) PORM = M
READ ( NIN, FMT = * ) ( INDEX(I), I = 1,PORM )
PORP = M
IF ( .NOT.LLERI ) PORP = P
KPCOEF = 0
DO 20 I = 1, PORM
KPCOEF = MAX( KPCOEF, INDEX(I) )
20 CONTINUE
KPCOEF = KPCOEF + 1
IF ( KPCOEF.LE.0 .OR. KPCOEF.GT.KPCMAX ) THEN
WRITE ( NOUT, FMT = 99993 ) KPCOEF
ELSE
READ ( NIN, FMT = * )
$ ( ( ( PCOEFF(I,J,K), K = 1,KPCOEF ), J = 1,PORM ),
$ I = 1,PORM )
READ ( NIN, FMT = * )
$ ( ( ( QCOEFF(I,J,K), K = 1,KPCOEF ), J = 1,PORP ),
$ I = 1,PORM )
* Find the standard frequency response matrix of left pmr
* at 0.5*j.
CALL TC05AD( LERI, M, P, SVAL, INDEX, PCOEFF, LDPCO1,
$ LDPCO2, QCOEFF, LDQCO1, LDQCO2, RCOND, CFREQR,
$ LDCFRE, IWORK, DWORK, ZWORK, INFO )
*
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
WRITE ( NOUT, FMT = 99997 ) RCOND
DO 40 I = 1, PORM
WRITE ( NOUT, FMT = 99996 )
$ ( CFREQR(I,J), J = 1,PORP )
40 CONTINUE
END IF
END IF
END IF
STOP
*
99999 FORMAT (' TC05AD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from TC05AD = ',I2)
99997 FORMAT (' RCOND = ',F4.2,//' The frequency response matrix T(SVA',
$ 'L) is ')
99996 FORMAT (20(' (',F5.2,',',F5.2,') ',:))
99995 FORMAT (/' M is out of range.',/' M = ',I5)
99994 FORMAT (/' P is out of range.',/' P = ',I5)
99993 FORMAT (/' KPCOEF is out of range.',/' KPCOEF = ',I5)
END
</PRE>
<B>Program Data</B>
<PRE>
TC05AD EXAMPLE PROGRAM DATA
2 2 (0.0,0.5) L
2 2
2.0 3.0 1.0
4.0 -1.0 -1.0
5.0 7.0 -6.0
3.0 2.0 2.0
6.0 -1.0 5.0
1.0 7.0 5.0
1.0 1.0 1.0
4.0 1.0 -1.0
</PRE>
<B>Program Results</B>
<PRE>
TC05AD EXAMPLE PROGRAM RESULTS
RCOND = 0.19
The frequency response matrix T(SVAL) is
(-0.25,-0.33) ( 0.26,-0.45)
(-1.48, 0.35) (-2.25,-1.11)
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|