1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
<HTML>
<HEAD><TITLE>TF01MD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="TF01MD">TF01MD</A></H2>
<H3>
Output response sequence of a linear time-invariant discrete-time system
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute the output sequence of a linear time-invariant
open-loop system given by its discrete-time state-space model
(A,B,C,D), where A is an N-by-N general matrix.
The initial state vector x(1) must be supplied by the user.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE TF01MD( N, M, P, NY, A, LDA, B, LDB, C, LDC, D, LDD,
$ U, LDU, X, Y, LDY, DWORK, INFO )
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LDC, LDD, LDU, LDY, M, N, NY, P
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
$ DWORK(*), U(LDU,*), X(*), Y(LDY,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the matrix A. N >= 0.
M (input) INTEGER
The number of system inputs. M >= 0.
P (input) INTEGER
The number of system outputs. P >= 0.
NY (input) INTEGER
The number of output vectors y(k) to be computed.
NY >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The leading N-by-N part of this array must contain the
state matrix A of the system.
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,N).
B (input) DOUBLE PRECISION array, dimension (LDB,M)
The leading N-by-M part of this array must contain the
input matrix B of the system.
LDB INTEGER
The leading dimension of array B. LDB >= MAX(1,N).
C (input) DOUBLE PRECISION array, dimension (LDC,N)
The leading P-by-N part of this array must contain the
output matrix C of the system.
LDC INTEGER
The leading dimension of array C. LDC >= MAX(1,P).
D (input) DOUBLE PRECISION array, dimension (LDD,M)
The leading P-by-M part of this array must contain the
direct link matrix D of the system.
LDD INTEGER
The leading dimension of array D. LDD >= MAX(1,P).
U (input) DOUBLE PRECISION array, dimension (LDU,NY)
The leading M-by-NY part of this array must contain the
input vector sequence u(k), for k = 1,2,...,NY.
Specifically, the k-th column of U must contain u(k).
LDU INTEGER
The leading dimension of array U. LDU >= MAX(1,M).
X (input/output) DOUBLE PRECISION array, dimension (N)
On entry, this array must contain the initial state vector
x(1) which consists of the N initial states of the system.
On exit, this array contains the final state vector
x(NY+1) of the N states of the system at instant NY.
Y (output) DOUBLE PRECISION array, dimension (LDY,NY)
The leading P-by-NY part of this array contains the output
vector sequence y(1),y(2),...,y(NY) such that the k-th
column of Y contains y(k) (the outputs at instant k),
for k = 1,2,...,NY.
LDY INTEGER
The leading dimension of array Y. LDY >= MAX(1,P).
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (N)
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
Given an initial state vector x(1), the output vector sequence
y(1), y(2),..., y(NY) is obtained via the formulae
x(k+1) = A x(k) + B u(k)
y(k) = C x(k) + D u(k),
where each element y(k) is a vector of length P containing the
outputs at instant k and k = 1,2,...,NY.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Luenberger, D.G.
Introduction to Dynamic Systems: Theory, Models and
Applications.
John Wiley & Sons, New York, 1979.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The algorithm requires approximately (N + M) x (N + P) x NY
multiplications and additions.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* TF01MD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX, MMAX, PMAX, NYMAX
PARAMETER ( NMAX = 20, MMAX = 20, PMAX = 20, NYMAX = 20 )
INTEGER LDA, LDB, LDC, LDD, LDU, LDY
PARAMETER ( LDA = NMAX, LDB = NMAX, LDC = PMAX, LDD = PMAX,
$ LDU = MMAX, LDY = PMAX )
INTEGER LDWORK
PARAMETER ( LDWORK = NMAX )
* .. Local Scalars ..
INTEGER I, INFO, J, K, M, N, NY, P
* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,NMAX),
$ D(LDD,MMAX), DWORK(LDWORK), U(LDU,NYMAX),
$ X(NMAX), Y(LDY,NYMAX)
* .. External Subroutines ..
EXTERNAL TF01MD
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, M, P, NY
IF ( N.LE.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99994 ) N
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), I = 1,N ), J = 1,N )
IF ( M.LE.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99993 ) M
ELSE
READ ( NIN, FMT = * ) ( ( B(I,J), I = 1,N ), J = 1,M )
IF ( P.LE.0 .OR. P.GT.PMAX ) THEN
WRITE ( NOUT, FMT = 99992 ) P
ELSE
READ ( NIN, FMT = * ) ( ( C(I,J), I = 1,P ), J = 1,N )
READ ( NIN, FMT = * ) ( ( D(I,J), I = 1,P ), J = 1,M )
READ ( NIN, FMT = * ) ( X(I), I = 1,N )
IF ( NY.LE.0 .OR. NY.GT.NYMAX ) THEN
WRITE ( NOUT, FMT = 99991 ) NY
ELSE
READ ( NIN, FMT = * )
$ ( ( U(I,J), I = 1,M ), J = 1,NY )
* Compute y(1),...,y(NY) of the given system.
CALL TF01MD( N, M, P, NY, A, LDA, B, LDB, C, LDC, D,
$ LDD, U, LDU, X, Y, LDY, DWORK, INFO )
*
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
WRITE ( NOUT, FMT = 99997 ) NY
DO 20 K = 1, NY
WRITE ( NOUT, FMT = 99996 ) K, Y(1,K)
WRITE ( NOUT, FMT = 99995 ) ( Y(J,K), J = 2,P )
20 CONTINUE
END IF
END IF
END IF
END IF
END IF
STOP
*
99999 FORMAT (' TF01MD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from TF01MD = ',I2)
99997 FORMAT (' The output sequence Y(1),...,Y(',I2,') is',/)
99996 FORMAT (' Y(',I2,') : ',F8.4)
99995 FORMAT (9X,F8.4,/)
99994 FORMAT (/' N is out of range.',/' N = ',I5)
99993 FORMAT (/' M is out of range.',/' M = ',I5)
99992 FORMAT (/' P is out of range.',/' P = ',I5)
99991 FORMAT (/' NY is out of range.',/' NY = ',I5)
END
</PRE>
<B>Program Data</B>
<PRE>
TF01MD EXAMPLE PROGRAM DATA
3 2 2 10
0.0000 -0.0700 0.0150
1.0000 0.8000 -0.1500
0.0000 0.0000 0.5000
0.0000 2.0000 1.0000
-1.0000 -0.1000 1.0000
0.0000 1.0000
0.0000 0.0000
1.0000 0.0000
1.0000 0.5000
0.0000 0.5000
1.0000 1.0000 1.0000
-0.6922 -1.4934 0.3081 -2.7726 2.0039
0.2614 -0.9160 -0.6030 1.2556 0.2951
-1.5734 1.5639 -0.9942 1.8957 0.8988
0.4118 -1.4893 -0.9344 1.2506 -0.0701
</PRE>
<B>Program Results</B>
<PRE>
TF01MD EXAMPLE PROGRAM RESULTS
The output sequence Y(1),...,Y(10) is
Y( 1) : 0.3078
-0.0928
Y( 2) : -1.5125
1.2611
Y( 3) : -1.2577
3.4002
Y( 4) : -0.2947
-0.7060
Y( 5) : -0.5632
5.4532
Y( 6) : -1.0846
1.1846
Y( 7) : -1.2427
2.2286
Y( 8) : 1.8097
-1.9534
Y( 9) : 0.6685
-4.4965
Y(10) : -0.0896
1.1654
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|