File: TF01MD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (294 lines) | stat: -rw-r--r-- 9,014 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
<HTML>
<HEAD><TITLE>TF01MD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="TF01MD">TF01MD</A></H2>
<H3>
Output response sequence of a linear time-invariant discrete-time system
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute the output sequence of a linear time-invariant
  open-loop system given by its discrete-time state-space model
  (A,B,C,D), where A is an N-by-N general matrix.

  The initial state vector x(1) must be supplied by the user.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE TF01MD( N, M, P, NY, A, LDA, B, LDB, C, LDC, D, LDD,
     $                   U, LDU, X, Y, LDY, DWORK, INFO )
C     .. Scalar Arguments ..
      INTEGER           INFO, LDA, LDB, LDC, LDD, LDU, LDY, M, N, NY, P
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
     $                  DWORK(*), U(LDU,*), X(*), Y(LDY,*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the matrix A.  N &gt;= 0.

  M       (input) INTEGER
          The number of system inputs.  M &gt;= 0.

  P       (input) INTEGER
          The number of system outputs.  P &gt;= 0.

  NY      (input) INTEGER
          The number of output vectors y(k) to be computed.
          NY &gt;= 0.

  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
          The leading N-by-N part of this array must contain the
          state matrix A of the system.

  LDA     INTEGER
          The leading dimension of array A.  LDA &gt;= MAX(1,N).

  B       (input) DOUBLE PRECISION array, dimension (LDB,M)
          The leading N-by-M part of this array must contain the
          input matrix B of the system.

  LDB     INTEGER
          The leading dimension of array B.  LDB &gt;= MAX(1,N).

  C       (input) DOUBLE PRECISION array, dimension (LDC,N)
          The leading P-by-N part of this array must contain the
          output matrix C of the system.

  LDC     INTEGER
          The leading dimension of array C.  LDC &gt;= MAX(1,P).

  D       (input) DOUBLE PRECISION array, dimension (LDD,M)
          The leading P-by-M part of this array must contain the
          direct link matrix D of the system.

  LDD     INTEGER
          The leading dimension of array D.  LDD &gt;= MAX(1,P).

  U       (input) DOUBLE PRECISION array, dimension (LDU,NY)
          The leading M-by-NY part of this array must contain the
          input vector sequence u(k), for k = 1,2,...,NY.
          Specifically, the k-th column of U must contain u(k).

  LDU     INTEGER
          The leading dimension of array U.  LDU &gt;= MAX(1,M).

  X       (input/output) DOUBLE PRECISION array, dimension (N)
          On entry, this array must contain the initial state vector
          x(1) which consists of the N initial states of the system.
          On exit, this array contains the final state vector
          x(NY+1) of the N states of the system at instant NY.

  Y       (output) DOUBLE PRECISION array, dimension (LDY,NY)
          The leading P-by-NY part of this array contains the output
          vector sequence y(1),y(2),...,y(NY) such that the k-th
          column of Y contains y(k) (the outputs at instant k),
          for k = 1,2,...,NY.

  LDY     INTEGER
          The leading dimension of array Y.  LDY &gt;= MAX(1,P).

</PRE>
<B>Workspace</B>
<PRE>
  DWORK   DOUBLE PRECISION array, dimension (N)

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  Given an initial state vector x(1), the output vector sequence
  y(1), y(2),..., y(NY) is obtained via the formulae

     x(k+1) = A x(k) + B u(k)
     y(k)   = C x(k) + D u(k),

  where each element y(k) is a vector of length P containing the
  outputs at instant k and k = 1,2,...,NY.

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Luenberger, D.G.
      Introduction to Dynamic Systems: Theory, Models and
      Applications.
      John Wiley & Sons, New York, 1979.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The algorithm requires approximately (N + M) x (N + P) x NY
  multiplications and additions.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
*     TF01MD EXAMPLE PROGRAM TEXT
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          NMAX, MMAX, PMAX, NYMAX
      PARAMETER        ( NMAX = 20, MMAX = 20, PMAX = 20, NYMAX = 20 )
      INTEGER          LDA, LDB, LDC, LDD, LDU, LDY
      PARAMETER        ( LDA = NMAX, LDB = NMAX, LDC = PMAX, LDD = PMAX,
     $                   LDU = MMAX, LDY = PMAX )
      INTEGER          LDWORK
      PARAMETER        ( LDWORK = NMAX )
*     .. Local Scalars ..
      INTEGER          I, INFO, J, K, M, N, NY, P
*     .. Local Arrays ..
      DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,NMAX),
     $                 D(LDD,MMAX), DWORK(LDWORK), U(LDU,NYMAX),
     $                 X(NMAX), Y(LDY,NYMAX)
*     .. External Subroutines ..
      EXTERNAL         TF01MD
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N, M, P, NY
      IF ( N.LE.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99994 ) N
      ELSE
         READ ( NIN, FMT = * ) ( ( A(I,J), I = 1,N ), J = 1,N )
         IF ( M.LE.0 .OR. M.GT.MMAX ) THEN
            WRITE ( NOUT, FMT = 99993 ) M
         ELSE
            READ ( NIN, FMT = * ) ( ( B(I,J), I = 1,N ), J = 1,M )
            IF ( P.LE.0 .OR. P.GT.PMAX ) THEN
               WRITE ( NOUT, FMT = 99992 ) P
            ELSE
               READ ( NIN, FMT = * ) ( ( C(I,J), I = 1,P ), J = 1,N )
               READ ( NIN, FMT = * ) ( ( D(I,J), I = 1,P ), J = 1,M )
               READ ( NIN, FMT = * ) ( X(I), I = 1,N )
               IF ( NY.LE.0 .OR. NY.GT.NYMAX ) THEN
                  WRITE ( NOUT, FMT = 99991 ) NY
               ELSE
                  READ ( NIN, FMT = * )
     $                 ( ( U(I,J), I = 1,M ), J = 1,NY )
*                 Compute y(1),...,y(NY) of the given system.
                  CALL TF01MD( N, M, P, NY, A, LDA, B, LDB, C, LDC, D,
     $                         LDD, U, LDU, X, Y, LDY, DWORK, INFO )
*
                  IF ( INFO.NE.0 ) THEN
                     WRITE ( NOUT, FMT = 99998 ) INFO
                  ELSE
                     WRITE ( NOUT, FMT = 99997 ) NY
                     DO 20 K = 1, NY
                        WRITE ( NOUT, FMT = 99996 ) K, Y(1,K)
                        WRITE ( NOUT, FMT = 99995 ) ( Y(J,K), J = 2,P )
   20                CONTINUE
                  END IF
               END IF
            END IF
         END IF
      END IF
      STOP
*
99999 FORMAT (' TF01MD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from TF01MD = ',I2)
99997 FORMAT (' The output sequence Y(1),...,Y(',I2,') is',/)
99996 FORMAT (' Y(',I2,') : ',F8.4)
99995 FORMAT (9X,F8.4,/)
99994 FORMAT (/' N is out of range.',/' N = ',I5)
99993 FORMAT (/' M is out of range.',/' M = ',I5)
99992 FORMAT (/' P is out of range.',/' P = ',I5)
99991 FORMAT (/' NY is out of range.',/' NY = ',I5)
      END
</PRE>
<B>Program Data</B>
<PRE>
 TF01MD EXAMPLE PROGRAM DATA
   3     2     2     10
   0.0000 -0.0700  0.0150
   1.0000  0.8000 -0.1500
   0.0000  0.0000  0.5000
   0.0000  2.0000  1.0000
  -1.0000 -0.1000  1.0000
   0.0000  1.0000
   0.0000  0.0000
   1.0000  0.0000
   1.0000  0.5000
   0.0000  0.5000
   1.0000  1.0000  1.0000
  -0.6922 -1.4934  0.3081 -2.7726  2.0039
   0.2614 -0.9160 -0.6030  1.2556  0.2951
  -1.5734  1.5639 -0.9942  1.8957  0.8988
   0.4118 -1.4893 -0.9344  1.2506 -0.0701
</PRE>
<B>Program Results</B>
<PRE>
 TF01MD EXAMPLE PROGRAM RESULTS

 The output sequence Y(1),...,Y(10) is

 Y( 1) :   0.3078
          -0.0928

 Y( 2) :  -1.5125
           1.2611

 Y( 3) :  -1.2577
           3.4002

 Y( 4) :  -0.2947
          -0.7060

 Y( 5) :  -0.5632
           5.4532

 Y( 6) :  -1.0846
           1.1846

 Y( 7) :  -1.2427
           2.2286

 Y( 8) :   1.8097
          -1.9534

 Y( 9) :   0.6685
          -4.4965

 Y(10) :  -0.0896
           1.1654

</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>