1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
<HTML>
<HEAD><TITLE>TF01MX - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="TF01MX">TF01MX</A></H2>
<H3>
Output sequence of a linear time-invariant open-loop system given its system matrix
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To compute the output sequence of a linear time-invariant
open-loop system given by its discrete-time state-space model
with an (N+P)-by-(N+M) general system matrix S,
( A B )
S = ( ) .
( C D )
The initial state vector x(1) must be supplied by the user.
The input and output trajectories are stored as in the SLICOT
Library routine TF01MY.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE TF01MX( N, M, P, NY, S, LDS, U, LDU, X, Y, LDY,
$ DWORK, LDWORK, INFO )
C .. Scalar Arguments ..
INTEGER INFO, LDS, LDU, LDWORK, LDY, M, N, NY, P
C .. Array Arguments ..
DOUBLE PRECISION DWORK(*), S(LDS,*), U(LDU,*), X(*), Y(LDY,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
</PRE>
<B>Input/Output Parameters</B>
<PRE>
N (input) INTEGER
The order of the matrix A. N >= 0.
M (input) INTEGER
The number of system inputs. M >= 0.
P (input) INTEGER
The number of system outputs. P >= 0.
NY (input) INTEGER
The number of output vectors y(k) to be computed.
NY >= 0.
S (input) DOUBLE PRECISION array, dimension (LDS,N+M)
The leading (N+P)-by-(N+M) part of this array must contain
the system matrix S.
LDS INTEGER
The leading dimension of array S. LDS >= MAX(1,N+P).
U (input) DOUBLE PRECISION array, dimension (LDU,M)
The leading NY-by-M part of this array must contain the
input vector sequence u(k), for k = 1,2,...,NY.
Specifically, the k-th row of U must contain u(k)'.
LDU INTEGER
The leading dimension of array U. LDU >= MAX(1,NY).
X (input/output) DOUBLE PRECISION array, dimension (N)
On entry, this array must contain the initial state vector
x(1) which consists of the N initial states of the system.
On exit, this array contains the final state vector
x(NY+1) of the N states of the system at instant NY+1.
Y (output) DOUBLE PRECISION array, dimension (LDY,P)
The leading NY-by-P part of this array contains the output
vector sequence y(1),y(2),...,y(NY) such that the k-th
row of Y contains y(k)' (the outputs at instant k),
for k = 1,2,...,NY.
LDY INTEGER
The leading dimension of array Y. LDY >= MAX(1,NY).
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (LDWORK)
LDWORK INTEGER
The length of the array DWORK.
LDWORK >= 0, if MIN(N,P,NY) = 0; otherwise,
LDWORK >= N+P, if M = 0;
LDWORK >= 2*N+M+P, if M > 0.
For better performance, LDWORK should be larger.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
Given an initial state vector x(1), the output vector sequence
y(1), y(2),..., y(NY) is obtained via the formulae
( x(k+1) ) ( x(k) )
( ) = S ( ) ,
( y(k) ) ( u(k) )
where each element y(k) is a vector of length P containing the
outputs at instant k, and k = 1,2,...,NY.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Luenberger, D.G.
Introduction to Dynamic Systems: Theory, Models and
Applications.
John Wiley & Sons, New York, 1979.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The algorithm requires approximately (N + M) x (N + P) x NY
multiplications and additions.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
The implementation exploits data locality as much as possible,
given the workspace length.
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
None
</PRE>
<B>Program Data</B>
<PRE>
None
</PRE>
<B>Program Results</B>
<PRE>
None
</PRE>
<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>
|