File: TF01MX.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (165 lines) | stat: -rw-r--r-- 4,857 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
<HTML>
<HEAD><TITLE>TF01MX - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="TF01MX">TF01MX</A></H2>
<H3>
Output sequence of a linear time-invariant open-loop system given its system matrix
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute the output sequence of a linear time-invariant
  open-loop system given by its discrete-time state-space model
  with an (N+P)-by-(N+M) general system matrix S,

         ( A  B )
     S = (      ) .
         ( C  D )

  The initial state vector x(1) must be supplied by the user.

  The input and output trajectories are stored as in the SLICOT
  Library routine TF01MY.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE TF01MX( N, M, P, NY, S, LDS, U, LDU, X, Y, LDY,
     $                   DWORK, LDWORK, INFO )
C     .. Scalar Arguments ..
      INTEGER           INFO, LDS, LDU, LDWORK, LDY, M, N, NY, P
C     .. Array Arguments ..
      DOUBLE PRECISION  DWORK(*), S(LDS,*), U(LDU,*), X(*), Y(LDY,*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The order of the matrix A.  N &gt;= 0.

  M       (input) INTEGER
          The number of system inputs.  M &gt;= 0.

  P       (input) INTEGER
          The number of system outputs.  P &gt;= 0.

  NY      (input) INTEGER
          The number of output vectors y(k) to be computed.
          NY &gt;= 0.

  S       (input) DOUBLE PRECISION array, dimension (LDS,N+M)
          The leading (N+P)-by-(N+M) part of this array must contain
          the system matrix S.

  LDS     INTEGER
          The leading dimension of array S.  LDS &gt;= MAX(1,N+P).

  U       (input) DOUBLE PRECISION array, dimension (LDU,M)
          The leading NY-by-M part of this array must contain the
          input vector sequence u(k), for k = 1,2,...,NY.
          Specifically, the k-th row of U must contain u(k)'.

  LDU     INTEGER
          The leading dimension of array U.  LDU &gt;= MAX(1,NY).

  X       (input/output) DOUBLE PRECISION array, dimension (N)
          On entry, this array must contain the initial state vector
          x(1) which consists of the N initial states of the system.
          On exit, this array contains the final state vector
          x(NY+1) of the N states of the system at instant NY+1.

  Y       (output) DOUBLE PRECISION array, dimension (LDY,P)
          The leading NY-by-P part of this array contains the output
          vector sequence y(1),y(2),...,y(NY) such that the k-th
          row of Y contains y(k)' (the outputs at instant k),
          for k = 1,2,...,NY.

  LDY     INTEGER
          The leading dimension of array Y.  LDY &gt;= MAX(1,NY).

</PRE>
<B>Workspace</B>
<PRE>
  DWORK   DOUBLE PRECISION array, dimension (LDWORK)

  LDWORK  INTEGER
          The length of the array DWORK.
          LDWORK &gt;= 0,        if MIN(N,P,NY) = 0;  otherwise,
          LDWORK &gt;= N+P,      if M = 0;
          LDWORK &gt;= 2*N+M+P,  if M &gt; 0.
          For better performance, LDWORK should be larger.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  Given an initial state vector x(1), the output vector sequence
  y(1), y(2),..., y(NY) is obtained via the formulae

     ( x(k+1) )     ( x(k) )
     (        ) = S (      ) ,
     (  y(k)  )     ( u(k) )

  where each element y(k) is a vector of length P containing the
  outputs at instant k, and k = 1,2,...,NY.

</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
  [1] Luenberger, D.G.
      Introduction to Dynamic Systems: Theory, Models and
      Applications.
      John Wiley & Sons, New York, 1979.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The algorithm requires approximately (N + M) x (N + P) x NY
  multiplications and additions.

</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  The implementation exploits data locality as much as possible,
  given the workspace length.

</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
  None
</PRE>
<B>Program Data</B>
<PRE>
  None
</PRE>
<B>Program Results</B>
<PRE>
  None
</PRE>

<HR>
<A HREF=support.html><B>Return to Supporting Routines index</B></A></BODY>
</HTML>