1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
<HTML>
<HEAD><TITLE>TF01PD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="TF01PD">TF01PD</A></H2>
<H3>
Block Toeplitz expansion of a multivariable parameter sequence
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To construct the block Toeplitz expansion T of a multivariable
parameter sequence M(1),...,M(NR+NC-1), where each parameter M(k)
is an NH1-by-NH2 block matrix and k = 1,2,...,(NR+NC-1).
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE TF01PD( NH1, NH2, NR, NC, H, LDH, T, LDT, INFO )
C .. Scalar Arguments ..
INTEGER INFO, LDH, LDT, NC, NH1, NH2, NR
C .. Array Arguments ..
DOUBLE PRECISION H(LDH,*), T(LDT,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
</PRE>
<B>Input/Output Parameters</B>
<PRE>
NH1 (input) INTEGER
The number of rows in each parameter M(k). NH1 >= 0.
NH2 (input) INTEGER
The number of columns in each parameter M(k). NH2 >= 0.
NR (input) INTEGER
The number of parameters required in each column of the
block Toeplitz expansion matrix T. NR >= 0.
NC (input) INTEGER
The number of parameters required in each row of the
block Toeplitz expansion matrix T. NC >= 0.
H (input) DOUBLE PRECISION array, dimension
(LDH,(NR+NC-1)*NH2)
The leading NH1-by-(NR+NC-1)*NH2 part of this array must
contain the multivariable sequence M(k), where k = 1,2,
...,(NR+NC-1). Specifically, each parameter M(k) is an
NH1-by-NH2 matrix whose (i,j)-th element must be stored in
H(i,(k-1)*NH2+j) for i = 1,2,...,NH1 and j = 1,2,...,NH2.
LDH INTEGER
The leading dimension of array H. LDH >= MAX(1,NH1).
T (output) DOUBLE PRECISION array, dimension (LDT,NH2*NC)
The leading NH1*NR-by-NH2*NC part of this array contains
the block Toeplitz expansion of the multivariable sequence
M(k).
LDT INTEGER
The leading dimension of array T. LDT >= MAX(1,NH1*NR).
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The NH1-by-NH2 dimensional parameters M(k) of a multivariable
sequence are arranged into a matrix T in Toeplitz form such that
| M(NC) M(NC-1) M(NC-2) . . . M(1) |
| |
| M(NC+1) M(NC) M(NC-1) . . . M(2) |
T = | . . . . |.
| . . . . |
| . . . . |
| |
| M(NR+NC-1) M(NR+NC-2) M(NR+NC-3) . . . M(NR) |
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
[1] Johvidov, J.S.
Hankel and Toeplitz Matrices and Forms: Algebraic Theory,
(translated by G.P.A. Thijsse, I. Gohberg, ed.).
Birkhaeuser, Boston, 1982.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The time taken is approximately proportional to
NH1 x NH2 x NR x NC.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* TF01PD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NH1MAX, NH2MAX, NRMAX, NCMAX
PARAMETER ( NH1MAX = 20, NH2MAX = 20, NRMAX = 20,
$ NCMAX = 20 )
INTEGER LDH, LDT
PARAMETER ( LDH = NH1MAX, LDT = NH1MAX*NRMAX )
* .. Local Scalars ..
INTEGER I, INFO, J, NC, NCT, NH1, NH2, NR, NRT
* .. Local Arrays ..
DOUBLE PRECISION H(LDH,(NRMAX+NCMAX-1)*NH2MAX),
$ T(LDT,NH2MAX*NCMAX)
* .. External Subroutines ..
EXTERNAL TF01PD
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) NH1, NH2, NR, NC
IF ( NH1.LE.0 .OR. NH1.GE.NH1MAX ) THEN
WRITE ( NOUT, FMT = 99995 ) NH1
ELSE IF ( NH2.LE.0 .OR. NH2.GT.NH2MAX ) THEN
WRITE ( NOUT, FMT = 99994 ) NH2
ELSE IF ( NR.LE.0 .OR. NR.GT.NRMAX ) THEN
WRITE ( NOUT, FMT = 99993 ) NR
ELSE IF ( NC.LE.0 .OR. NC.GT.NCMAX ) THEN
WRITE ( NOUT, FMT = 99992 ) NC
ELSE
READ ( NIN, FMT = * )
$ ( ( H(I,J), I = 1,NH1 ), J = 1,( NR+NC-1 )*NH2 )
* Construct the NRT by NCT block Toeplitz expansion of M(k).
CALL TF01PD( NH1, NH2, NR, NC, H, LDH, T, LDT, INFO )
*
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
NRT = NH1*NR
NCT = NH2*NC
WRITE ( NOUT, FMT = 99997 ) NRT, NCT
DO 20 I = 1, NRT
WRITE ( NOUT, FMT = 99996 ) ( T(I,J), J = 1,NCT )
20 CONTINUE
END IF
END IF
STOP
*
99999 FORMAT (' TF01PD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from TF01PD = ',I2)
99997 FORMAT (' The ',I2,' by ',I2,' matrix T is ')
99996 FORMAT (20(1X,F8.4))
99995 FORMAT (/' NH1 is out of range.',/' NH1 = ',I5)
99994 FORMAT (/' NH2 is out of range.',/' NH2 = ',I5)
99993 FORMAT (/' NR is out of range.',/' NR = ',I5)
99992 FORMAT (/' NC is out of range.',/' NC = ',I5)
END
</PRE>
<B>Program Data</B>
<PRE>
TF01PD EXAMPLE PROGRAM DATA
2 2 3 3
1.0647 -0.4282 -0.4922 -1.2072
-0.3043 0.6883 -0.0926 0.7167
-0.1844 -0.8507 0.4441 -0.0478
0.7195 0.0500 -0.3955 0.5674
1.3387 -0.2801 0.1073 -0.5315
</PRE>
<B>Program Results</B>
<PRE>
TF01PD EXAMPLE PROGRAM RESULTS
The 6 by 6 matrix T is
-0.1844 0.4441 -0.3043 -0.0926 1.0647 -0.4922
-0.8507 -0.0478 0.6883 0.7167 -0.4282 -1.2072
0.7195 -0.3955 -0.1844 0.4441 -0.3043 -0.0926
0.0500 0.5674 -0.8507 -0.0478 0.6883 0.7167
1.3387 0.1073 0.7195 -0.3955 -0.1844 0.4441
-0.2801 -0.5315 0.0500 0.5674 -0.8507 -0.0478
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|