1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
<HTML>
<HEAD><TITLE>TG01CD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="TG01CD">TG01CD</A></H2>
<H3>
Orthogonal reduction of a descriptor system pair (A-lambda E,B) to the QR-coordinate form
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To reduce the descriptor system pair (A-lambda E,B) to the
QR-coordinate form by computing an orthogonal transformation
matrix Q such that the transformed descriptor system pair
(Q'*A-lambda Q'*E, Q'*B) has the descriptor matrix Q'*E
in an upper trapezoidal form.
The left orthogonal transformations performed to reduce E
can be optionally accumulated.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE TG01CD( COMPQ, L, N, M, A, LDA, E, LDE, B, LDB, Q, LDQ,
$ DWORK, LDWORK, INFO )
C .. Scalar Arguments ..
CHARACTER COMPQ
INTEGER INFO, L, LDA, LDB, LDE, LDQ, LDWORK, M, N
C .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), DWORK( * ),
$ E( LDE, * ), Q( LDQ, * )
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
COMPQ CHARACTER*1
= 'N': do not compute Q;
= 'I': Q is initialized to the unit matrix, and the
orthogonal matrix Q is returned;
= 'U': Q must contain an orthogonal matrix Q1 on entry,
and the product Q1*Q is returned.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
L (input) INTEGER
The number of rows of matrices A, B, and E. L >= 0.
N (input) INTEGER
The number of columns of matrices A and E. N >= 0.
M (input) INTEGER
The number of columns of matrix B. M >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading L-by-N part of this array must
contain the state dynamics matrix A.
On exit, the leading L-by-N part of this array contains
the transformed matrix Q'*A.
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,L).
E (input/output) DOUBLE PRECISION array, dimension (LDE,N)
On entry, the leading L-by-N part of this array must
contain the descriptor matrix E.
On exit, the leading L-by-N part of this array contains
the transformed matrix Q'*E in upper trapezoidal form,
i.e.
( E11 )
Q'*E = ( ) , if L >= N ,
( 0 )
or
Q'*E = ( E11 E12 ), if L < N ,
where E11 is an MIN(L,N)-by-MIN(L,N) upper triangular
matrix.
LDE INTEGER
The leading dimension of array E. LDE >= MAX(1,L).
B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
On entry, the leading L-by-M part of this array must
contain the input/state matrix B.
On exit, the leading L-by-M part of this array contains
the transformed matrix Q'*B.
LDB INTEGER
The leading dimension of array B.
LDB >= MAX(1,L) if M > 0 or LDB >= 1 if M = 0.
Q (input/output) DOUBLE PRECISION array, dimension (LDQ,L)
If COMPQ = 'N': Q is not referenced.
If COMPQ = 'I': on entry, Q need not be set;
on exit, the leading L-by-L part of this
array contains the orthogonal matrix Q,
where Q' is the product of Householder
transformations which are applied to A,
E, and B on the left.
If COMPQ = 'U': on entry, the leading L-by-L part of this
array must contain an orthogonal matrix
Q1;
on exit, the leading L-by-L part of this
array contains the orthogonal matrix
Q1*Q.
LDQ INTEGER
The leading dimension of array Q.
LDQ >= 1, if COMPQ = 'N';
LDQ >= MAX(1,L), if COMPQ = 'U' or 'I'.
</PRE>
<B>Workspace</B>
<PRE>
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) returns the optimal value
of LDWORK.
LDWORK INTEGER
The length of the array DWORK.
LDWORK >= MAX(1, MIN(L,N) + MAX(L,N,M)).
For optimum performance
LWORK >= MAX(1, MIN(L,N) + MAX(L,N,M)*NB),
where NB is the optimal blocksize.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The routine computes the QR factorization of E to reduce it
to the upper trapezoidal form.
The transformations are also applied to the rest of system
matrices
A <- Q' * A , B <- Q' * B.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
The algorithm is numerically backward stable and requires
0( L*L*N ) floating point operations.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* TG01CD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER LMAX, NMAX, MMAX
PARAMETER ( LMAX = 20, NMAX = 20, MMAX = 20)
INTEGER LDA, LDB, LDE, LDQ
PARAMETER ( LDA = LMAX, LDB = LMAX,
$ LDE = LMAX, LDQ = LMAX )
INTEGER LDWORK
PARAMETER ( LDWORK = MIN(LMAX,NMAX)+MAX(LMAX,NMAX,MMAX) )
* .. Local Scalars ..
CHARACTER*1 COMPQ
INTEGER I, INFO, J, L, M, N
* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX),
$ DWORK(LDWORK), E(LDE,NMAX), Q(LDQ,LMAX)
* .. External Subroutines ..
EXTERNAL TG01CD
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) L, N, M
COMPQ = 'I'
IF ( L.LT.0 .OR. L.GT.LMAX ) THEN
WRITE ( NOUT, FMT = 99992 ) L
ELSE
IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99991 ) N
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,L )
READ ( NIN, FMT = * ) ( ( E(I,J), J = 1,N ), I = 1,L )
IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99990 ) M
ELSE
READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,L )
* Find the transformed descriptor system pair
* (A-lambda E,B).
CALL TG01CD( COMPQ, L, N, M, A, LDA, E, LDE, B, LDB,
$ Q, LDQ, DWORK, LDWORK, INFO )
*
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
WRITE ( NOUT, FMT = 99997 )
DO 10 I = 1, L
WRITE ( NOUT, FMT = 99995 ) ( A(I,J), J = 1,N )
10 CONTINUE
WRITE ( NOUT, FMT = 99996 )
DO 20 I = 1, L
WRITE ( NOUT, FMT = 99995 ) ( E(I,J), J = 1,N )
20 CONTINUE
WRITE ( NOUT, FMT = 99994 )
DO 30 I = 1, L
WRITE ( NOUT, FMT = 99995 ) ( B(I,J), J = 1,M )
30 CONTINUE
WRITE ( NOUT, FMT = 99993 )
DO 40 I = 1, L
WRITE ( NOUT, FMT = 99995 ) ( Q(I,J), J = 1,L )
40 CONTINUE
END IF
END IF
END IF
END IF
STOP
*
99999 FORMAT (' TG01CD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from TG01CD = ',I2)
99997 FORMAT (/' The transformed state dynamics matrix Q''*A is ')
99996 FORMAT (/' The transformed descriptor matrix Q''*E is ')
99995 FORMAT (20(1X,F8.4))
99994 FORMAT (/' The transformed input/state matrix Q''*B is ')
99993 FORMAT (/' The left transformation matrix Q is ')
99992 FORMAT (/' L is out of range.',/' L = ',I5)
99991 FORMAT (/' N is out of range.',/' N = ',I5)
99990 FORMAT (/' M is out of range.',/' M = ',I5)
END
</PRE>
<B>Program Data</B>
<PRE>
TG01CD EXAMPLE PROGRAM DATA
4 4 2 0.0
-1 0 0 3
0 0 1 2
1 1 0 4
0 0 0 0
1 2 0 0
0 1 0 1
3 9 6 3
0 0 2 0
1 0
0 0
0 1
1 1
</PRE>
<B>Program Results</B>
<PRE>
TG01CD EXAMPLE PROGRAM RESULTS
The transformed state dynamics matrix Q'*A is
-0.6325 -0.9487 0.0000 -4.7434
-0.8706 -0.2176 -0.7255 -0.3627
-0.5203 -0.1301 0.3902 1.4307
-0.7559 -0.1890 0.5669 2.0788
The transformed descriptor matrix Q'*E is
-3.1623 -9.1706 -5.6921 -2.8460
0.0000 -1.3784 -1.3059 -1.3784
0.0000 0.0000 -2.4279 0.0000
0.0000 0.0000 0.0000 0.0000
The transformed input/state matrix Q'*B is
-0.3162 -0.9487
0.6529 -0.2176
-0.4336 -0.9538
1.1339 0.3780
The left transformation matrix Q is
-0.3162 0.6529 0.3902 0.5669
0.0000 -0.7255 0.3902 0.5669
-0.9487 -0.2176 -0.1301 -0.1890
0.0000 0.0000 -0.8238 0.5669
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|