File: TG01FD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (484 lines) | stat: -rw-r--r-- 17,454 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
<HTML>
<HEAD><TITLE>TG01FD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="TG01FD">TG01FD</A></H2>
<H3>
Orthogonal reduction of a descriptor system to a SVD-like coordinate form
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute for the descriptor system (A-lambda E,B,C)
  the orthogonal transformation matrices Q and Z such that the
  transformed system (Q'*A*Z-lambda Q'*E*Z, Q'*B, C*Z) is
  in a SVD-like coordinate form with

               ( A11  A12 )             ( Er  0 )
      Q'*A*Z = (          ) ,  Q'*E*Z = (       ) ,
               ( A21  A22 )             (  0  0 )

  where Er is an upper triangular invertible matrix.
  Optionally, the A22 matrix can be further reduced to the form

               ( Ar  X )
         A22 = (       ) ,
               (  0  0 )

  with Ar an upper triangular invertible matrix, and X either a full
  or a zero matrix.
  The left and/or right orthogonal transformations performed
  to reduce E and A22 can be optionally accumulated.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE TG01FD( COMPQ, COMPZ, JOBA, L, N, M, P, A, LDA, E, LDE,
     $                   B, LDB, C, LDC, Q, LDQ, Z, LDZ, RANKE, RNKA22,
     $                   TOL, IWORK, DWORK, LDWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER          COMPQ, COMPZ, JOBA
      INTEGER            INFO, L, LDA, LDB, LDC, LDE, LDQ, LDWORK,
     $                   LDZ, M, N, P, RANKE, RNKA22
      DOUBLE PRECISION   TOL
C     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, * ),
     $                   DWORK( * ),  E( LDE, * ), Q( LDQ, * ),
     $                   Z( LDZ, * )

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  COMPQ   CHARACTER*1
          = 'N':  do not compute Q;
          = 'I':  Q is initialized to the unit matrix, and the
                  orthogonal matrix Q is returned;
          = 'U':  Q must contain an orthogonal matrix Q1 on entry,
                  and the product Q1*Q is returned.

  COMPZ   CHARACTER*1
          = 'N':  do not compute Z;
          = 'I':  Z is initialized to the unit matrix, and the
                  orthogonal matrix Z is returned;
          = 'U':  Z must contain an orthogonal matrix Z1 on entry,
                  and the product Z1*Z is returned.

  JOBA    CHARACTER*1
          = 'N':  do not reduce A22;
          = 'R':  reduce A22 to a SVD-like upper triangular form.
          = 'T':  reduce A22 to an upper trapezoidal form.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  L       (input) INTEGER
          The number of rows of matrices A, B, and E.  L &gt;= 0.

  N       (input) INTEGER
          The number of columns of matrices A, E, and C.  N &gt;= 0.

  M       (input) INTEGER
          The number of columns of matrix B.  M &gt;= 0.

  P       (input) INTEGER
          The number of rows of matrix C.  P &gt;= 0.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading L-by-N part of this array must
          contain the state dynamics matrix A.
          On exit, the leading L-by-N part of this array contains
          the transformed matrix Q'*A*Z. If JOBA = 'T', this matrix
          is in the form

                        ( A11  *   *  )
               Q'*A*Z = (  *   Ar  X  ) ,
                        (  *   0   0  )

          where A11 is a RANKE-by-RANKE matrix and Ar is a
          RNKA22-by-RNKA22 invertible upper triangular matrix.
          If JOBA = 'R' then A has the above form with X = 0.

  LDA     INTEGER
          The leading dimension of array A.  LDA &gt;= MAX(1,L).

  E       (input/output) DOUBLE PRECISION array, dimension (LDE,N)
          On entry, the leading L-by-N part of this array must
          contain the descriptor matrix E.
          On exit, the leading L-by-N part of this array contains
          the transformed matrix Q'*E*Z.

                   ( Er  0 )
          Q'*E*Z = (       ) ,
                   (  0  0 )

          where Er is a RANKE-by-RANKE upper triangular invertible
          matrix.

  LDE     INTEGER
          The leading dimension of array E.  LDE &gt;= MAX(1,L).

  B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
          On entry, the leading L-by-M part of this array must
          contain the input/state matrix B.
          On exit, the leading L-by-M part of this array contains
          the transformed matrix Q'*B.

  LDB     INTEGER
          The leading dimension of array B.
          LDB &gt;= MAX(1,L) if M &gt; 0 or LDB &gt;= 1 if M = 0.

  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
          On entry, the leading P-by-N part of this array must
          contain the state/output matrix C.
          On exit, the leading P-by-N part of this array contains
          the transformed matrix C*Z.

  LDC     INTEGER
          The leading dimension of array C.  LDC &gt;= MAX(1,P).

  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,L)
          If COMPQ = 'N':  Q is not referenced.
          If COMPQ = 'I':  on entry, Q need not be set;
                           on exit, the leading L-by-L part of this
                           array contains the orthogonal matrix Q,
                           where Q' is the product of Householder
                           transformations which are applied to A,
                           E, and B on the left.
          If COMPQ = 'U':  on entry, the leading L-by-L part of this
                           array must contain an orthogonal matrix
                           Q1;
                           on exit, the leading L-by-L part of this
                           array contains the orthogonal matrix
                           Q1*Q.

  LDQ     INTEGER
          The leading dimension of array Q.
          LDQ &gt;= 1,        if COMPQ = 'N';
          LDQ &gt;= MAX(1,L), if COMPQ = 'U' or 'I'.

  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
          If COMPZ = 'N':  Z is not referenced.
          If COMPZ = 'I':  on entry, Z need not be set;
                           on exit, the leading N-by-N part of this
                           array contains the orthogonal matrix Z,
                           which is the product of Householder
                           transformations applied to A, E, and C
                           on the right.
          If COMPZ = 'U':  on entry, the leading N-by-N part of this
                           array must contain an orthogonal matrix
                           Z1;
                           on exit, the leading N-by-N part of this
                           array contains the orthogonal matrix
                           Z1*Z.

  LDZ     INTEGER
          The leading dimension of array Z.
          LDZ &gt;= 1,        if COMPZ = 'N';
          LDZ &gt;= MAX(1,N), if COMPZ = 'U' or 'I'.

  RANKE   (output) INTEGER
          The estimated rank of matrix E, and thus also the order
          of the invertible upper triangular submatrix Er.

  RNKA22  (output) INTEGER
          If JOBA = 'R' or 'T', then RNKA22 is the estimated rank of
          matrix A22, and thus also the order of the invertible
          upper triangular submatrix Ar.
          If JOBA = 'N', then RNKA22 is not referenced.

</PRE>
<B>Tolerances</B>
<PRE>
  TOL     DOUBLE PRECISION
          The tolerance to be used in determining the rank of E
          and of A22. If the user sets TOL &gt; 0, then the given
          value of TOL is used as a lower bound for the
          reciprocal condition numbers of leading submatrices
          of R or R22 in the QR decompositions E * P = Q * R of E
          or A22 * P22 = Q22 * R22 of A22.
          A submatrix whose estimated condition number is less than
          1/TOL is considered to be of full rank.  If the user sets
          TOL &lt;= 0, then an implicitly computed, default tolerance,
          defined by  TOLDEF = L*N*EPS,  is used instead, where
          EPS is the machine precision (see LAPACK Library routine
          DLAMCH). TOL &lt; 1.

</PRE>
<B>Workspace</B>
<PRE>
  IWORK   INTEGER array, dimension (N)

  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) returns the optimal value
          of LDWORK.

  LDWORK  INTEGER
          The length of the array DWORK.
          LDWORK &gt;= MAX( 1, N+P, MIN(L,N)+MAX(3*N-1,M,L) ).
          For optimal performance, LDWORK should be larger.

          If LDWORK = -1, then a workspace query is assumed;
          the routine only calculates the optimal size of the
          DWORK array, returns this value as the first entry of
          the DWORK array, and no error message related to LDWORK
          is issued by XERBLA.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value.

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  The routine computes a truncated QR factorization with column
  pivoting of E, in the form

                    ( E11 E12 )
        E * P = Q * (         )
                    (  0  E22 )

  and finds the largest RANKE-by-RANKE leading submatrix E11 whose
  estimated condition number is less than 1/TOL. RANKE defines thus
  the rank of matrix E. Further E22, being negligible, is set to
  zero, and an orthogonal matrix Y is determined such that

        ( E11 E12 ) = ( Er  0 ) * Y .

  The overal transformation matrix Z results as Z = P * Y' and the
  resulting transformed matrices Q'*A*Z and Q'*E*Z have the form

                       ( Er  0 )                      ( A11  A12 )
      E &lt;- Q'* E * Z = (       ) ,  A &lt;- Q' * A * Z = (          ) ,
                       (  0  0 )                      ( A21  A22 )

  where Er is an upper triangular invertible matrix.
  If JOBA = 'R' the same reduction is performed on A22 to obtain it
  in the form

               ( Ar  0 )
         A22 = (       ) ,
               (  0  0 )

  with Ar an upper triangular invertible matrix.
  If JOBA = 'T' then A22 is row compressed using the QR
  factorization with column pivoting to the form

               ( Ar  X )
         A22 = (       )
               (  0  0 )

  with Ar an upper triangular invertible matrix.

  The transformations are also applied to the rest of system
  matrices

       B &lt;- Q' * B, C &lt;- C * Z.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
  The algorithm is numerically backward stable and requires
  0( L*L*N )  floating point operations.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
*     TG01FD EXAMPLE PROGRAM TEXT
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          LMAX, NMAX, MMAX, PMAX
      PARAMETER        ( LMAX = 20, NMAX = 20, MMAX = 20, PMAX = 20 )
      INTEGER          LDA, LDB, LDC, LDE, LDQ, LDZ
      PARAMETER        ( LDA = LMAX, LDB = LMAX, LDC = PMAX,
     $                   LDE = LMAX, LDQ = LMAX, LDZ = NMAX )
      INTEGER          LDWORK
      PARAMETER        ( LDWORK = MAX( 1, PMAX,
     $                   MIN(LMAX,NMAX)+MAX( 3*NMAX, MMAX, LMAX ) ) )
*     .. Local Scalars ..
      CHARACTER*1      COMPQ, COMPZ, JOBA
      INTEGER          I, INFO, J, L, M, N, P, RANKE, RNKA22
      DOUBLE PRECISION TOL
*     .. Local Arrays ..
      INTEGER          IWORK(NMAX)
      DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,NMAX),
     $                 DWORK(LDWORK), E(LDE,NMAX), Q(LDQ,LMAX),
     $                 Z(LDZ,NMAX)
*     .. External Subroutines ..
      EXTERNAL         TG01FD
*     .. Intrinsic Functions ..
      INTRINSIC        MAX, MIN
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) L, N, M, P, TOL
      COMPQ = 'I'
      COMPZ = 'I'
      JOBA = 'R'
      IF ( L.LT.0 .OR. L.GT.LMAX ) THEN
         WRITE ( NOUT, FMT = 99989 ) L
      ELSE
         IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
            WRITE ( NOUT, FMT = 99988 ) N
         ELSE
            READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,L )
            READ ( NIN, FMT = * ) ( ( E(I,J), J = 1,N ), I = 1,L )
            IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
               WRITE ( NOUT, FMT = 99987 ) M
            ELSE
               READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,L )
               IF ( P.LT.0 .OR. P.GT.PMAX ) THEN
                  WRITE ( NOUT, FMT = 99986 ) P
               ELSE
                  READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P )
*                 Find the transformed descriptor system
*                 (A-lambda E,B,C).
                  CALL TG01FD( COMPQ, COMPZ, JOBA, L, N, M, P, A, LDA,
     $                         E, LDE, B, LDB, C, LDC, Q, LDQ, Z, LDZ,
     $                         RANKE, RNKA22, TOL, IWORK, DWORK, LDWORK,
     $                         INFO )
*
                  IF ( INFO.NE.0 ) THEN
                     WRITE ( NOUT, FMT = 99998 ) INFO
                  ELSE
                     WRITE ( NOUT, FMT = 99994 ) RANKE, RNKA22
                     WRITE ( NOUT, FMT = 99997 )
                     DO 10 I = 1, L
                        WRITE ( NOUT, FMT = 99995 ) ( A(I,J), J = 1,N )
   10                CONTINUE
                     WRITE ( NOUT, FMT = 99996 )
                     DO 20 I = 1, L
                        WRITE ( NOUT, FMT = 99995 ) ( E(I,J), J = 1,N )
   20                CONTINUE
                     WRITE ( NOUT, FMT = 99993 )
                     DO 30 I = 1, L
                        WRITE ( NOUT, FMT = 99995 ) ( B(I,J), J = 1,M )
   30                CONTINUE
                     WRITE ( NOUT, FMT = 99992 )
                     DO 40 I = 1, P
                        WRITE ( NOUT, FMT = 99995 ) ( C(I,J), J = 1,N )
   40                CONTINUE
                     WRITE ( NOUT, FMT = 99991 )
                     DO 50 I = 1, L
                        WRITE ( NOUT, FMT = 99995 ) ( Q(I,J), J = 1,L )
   50                CONTINUE
                     WRITE ( NOUT, FMT = 99990 )
                     DO 60 I = 1, N
                        WRITE ( NOUT, FMT = 99995 ) ( Z(I,J), J = 1,N )
   60                CONTINUE
                  END IF
               END IF
            END IF
         END IF
      END IF
      STOP
*
99999 FORMAT (' TG01FD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from TG01FD = ',I2)
99997 FORMAT (/' The transformed state dynamics matrix Q''*A*Z is ')
99996 FORMAT (/' The transformed descriptor matrix Q''*E*Z is ')
99995 FORMAT (20(1X,F8.4))
99994 FORMAT (' Rank of matrix E   =', I5/
     $        ' Rank of matrix A22 =', I5)
99993 FORMAT (/' The transformed input/state matrix Q''*B is ')
99992 FORMAT (/' The transformed state/output matrix C*Z is ')
99991 FORMAT (/' The left transformation matrix Q is ')
99990 FORMAT (/' The right transformation matrix Z is ')
99989 FORMAT (/' L is out of range.',/' L = ',I5)
99988 FORMAT (/' N is out of range.',/' N = ',I5)
99987 FORMAT (/' M is out of range.',/' M = ',I5)
99986 FORMAT (/' P is out of range.',/' P = ',I5)
      END
</PRE>
<B>Program Data</B>
<PRE>
TG01FD EXAMPLE PROGRAM DATA
  4    4     2     2     0.0    
    -1     0     0     3
     0     0     1     2
     1     1     0     4
     0     0     0     0
     1     2     0     0
     0     1     0     1
     3     9     6     3
     0     0     2     0
     1     0
     0     0
     0     1
     1     1
    -1     0     1     0
     0     1    -1     1
</PRE>
<B>Program Results</B>
<PRE>
 TG01FD EXAMPLE PROGRAM RESULTS

 Rank of matrix E   =    3
 Rank of matrix A22 =    1

 The transformed state dynamics matrix Q'*A*Z is 
   2.0278   0.1078   3.9062  -2.1571
  -0.0980   0.2544   1.6053  -0.1269
   0.2713   0.7760  -0.3692  -0.4853
   0.0690  -0.5669  -2.1974   0.3086

 The transformed descriptor matrix Q'*E*Z is 
  10.1587   5.8230   1.3021   0.0000
   0.0000  -2.4684  -0.1896   0.0000
   0.0000   0.0000   1.0338   0.0000
   0.0000   0.0000   0.0000   0.0000

 The transformed input/state matrix Q'*B is 
  -0.2157  -0.9705
   0.3015   0.9516
   0.7595   0.0991
   1.1339   0.3780

 The transformed state/output matrix C*Z is 
   0.3651  -1.0000  -0.4472  -0.8165
  -1.0954   1.0000  -0.8944   0.0000

 The left transformation matrix Q is 
  -0.2157  -0.5088   0.6109   0.5669
  -0.1078  -0.2544  -0.7760   0.5669
  -0.9705   0.1413  -0.0495  -0.1890
   0.0000   0.8102   0.1486   0.5669

 The right transformation matrix Z is 
  -0.3651   0.0000   0.4472   0.8165
  -0.9129   0.0000   0.0000  -0.4082
   0.0000  -1.0000   0.0000   0.0000
  -0.1826   0.0000  -0.8944   0.4082
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>