1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
|
<HTML>
<HEAD><TITLE>TG01GD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="TG01GD">TG01GD</A></H2>
<H3>
Reduced descriptor representation without non-dynamic modes
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To find a reduced descriptor representation (Ar-lambda*Er,Br,Cr)
without non-dynamic modes for a descriptor representation
(A-lambda*E,B,C). Optionally, the reduced descriptor system can
be put into a standard form with the leading diagonal block
of Er identity.
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE TG01GD( JOBS, L, N, M, P, A, LDA, E, LDE, B, LDB,
$ C, LDC, D, LDD, LR, NR, RANKE, INFRED, TOL,
$ IWORK, DWORK, LDWORK, INFO )
C .. Scalar Arguments ..
CHARACTER JOBS
INTEGER INFO, INFRED, L, LDA, LDB, LDC, LDD, LDE,
$ LDWORK, LR, M, N, NR, P, RANKE
DOUBLE PRECISION TOL
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
$ DWORK(*), E(LDE,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
<B>Mode Parameters</B>
<PRE>
JOBS CHARACTER*1
Indicates whether the user wishes to transform the leading
diagonal block of Er to an identity matrix, as follows:
= 'S': make Er with leading diagonal identity;
= 'D': keep Er unreduced or upper triangular.
</PRE>
<B>Input/Output Parameters</B>
<PRE>
L (input) INTEGER
The number of rows of the matrices A, E, and B;
also the number of differential equations. L >= 0.
N (input) INTEGER
The number of columns of the matrices A, E, and C;
also the dimension of descriptor state vector. N >= 0.
M (input) INTEGER
The number of columns of the matrix B;
also the dimension of the input vector. M >= 0.
P (input) INTEGER
The number of rows of the matrix C.
also the dimension of the output vector. P >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading L-by-N part of this array must
contain the state dynamics matrix A.
On exit, if NR < N, the leading LR-by-NR part of this
array contains the reduced order state matrix Ar of a
descriptor realization without non-dynamic modes.
Array A contains the original state dynamics matrix if
INFRED < 0.
LDA INTEGER
The leading dimension of the array A. LDA >= MAX(1,L).
E (input/output) DOUBLE PRECISION array, dimension (LDE,N)
On entry, the leading L-by-N part of this array must
contain the descriptor matrix E.
On exit, if INFRED >= 0, the leading LR-by-NR part of this
array contains the reduced order descriptor matrix Er of a
descriptor realization without non-dynamic modes.
In this case, only the leading RANKE-by-RANKE submatrix
of Er is nonzero and this submatrix is nonsingular and
upper triangular. Array E contains the original descriptor
matrix if INFRED < 0. If JOBS = 'S', then the leading
RANKE-by-RANKE submatrix results in an identity matrix.
LDE INTEGER
The leading dimension of the array E. LDE >= MAX(1,L).
B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
On entry, the leading L-by-M part of this array must
contain the input matrix B.
On exit, the leading LR-by-M part of this array contains
the reduced order input matrix Br of a descriptor
realization without non-dynamic modes. Array B contains
the original input matrix if INFRED < 0.
LDB INTEGER
The leading dimension of the array B. LDB >= MAX(1,L).
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the leading P-by-N part of this array must
contain the output matrix C.
On exit, the leading P-by-NR part of this array contains
the reduced order output matrix Cr of a descriptor
realization without non-dynamic modes. Array C contains
the original output matrix if INFRED < 0.
LDC INTEGER
The leading dimension of the array C. LDC >= MAX(1,P).
D (input/output) DOUBLE PRECISION array, dimension (LDD,M)
On entry, the leading P-by-M part of this array must
contain the original feedthrough matrix D.
On exit, the leading P-by-M part of this array contains
the feedthrough matrix Dr of a reduced descriptor
realization without non-dynamic modes.
LDD INTEGER
The leading dimension of the array D. LDD >= MAX(1,P).
LR (output) INTEGER
The number of reduced differential equations.
NR (output) INTEGER
The dimension of the reduced descriptor state vector.
RANKE (output) INTEGER
The estimated rank of the matrix E.
INFRED (output) INTEGER
This parameter contains information on performed reduction
and on structure of resulting system matrices, as follows:
INFRED >= 0 the reduced system is in an SVD-like
coordinate form with Er upper triangular;
INFRED is the achieved order reduction.
INFRED < 0 no reduction achieved and the original
system has been restored.
</PRE>
<B>Tolerances</B>
<PRE>
TOL DOUBLE PRECISION
The tolerance to be used in rank determinations when
transforming (A-lambda*E). If the user sets TOL > 0,
then the given value of TOL is used as a lower bound for
reciprocal condition numbers in rank determinations; a
(sub)matrix whose estimated condition number is less than
1/TOL is considered to be of full rank. If the user sets
TOL <= 0, then an implicitly computed, default tolerance,
defined by TOLDEF = L*N*EPS, is used instead, where EPS
is the machine precision (see LAPACK Library routine
DLAMCH). TOL < 1.
</PRE>
<B>Workspace</B>
<PRE>
IWORK INTEGER array, dimension (N)
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) returns the optimal value
of LDWORK.
LDWORK INTEGER
The length of the array DWORK.
LDWORK >= 1, if MIN(L,N) = 0; otherwise,
LDWORK >= MAX( N+P, MIN(L,N)+MAX(3*N-1,M,L) ).
If LDWORK >= 2*L*N+L*M+N*P+
MAX( 1, N+P, MIN(L,N)+MAX(3*N-1,M,L) ) then
the original matrices are restored if no order reduction
is possible. This is achieved by saving system matrices
before reduction and restoring them if no order reduction
took place.
If LDWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the DWORK
array, returns this value as the first entry of the DWORK
array, and no error message related to LDWORK is issued by
XERBLA. The optimal size does not necessarily include the
space needed for saving the original system matrices.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
The subroutine elliminates the non-dynamics modes in two steps:
Step 1: Reduce the system to the SVD-like coordinate form
(Q'*A*Z-lambda*Q'*E*Z, Q'*B, C*Z) , where
( A11 A12 A13 ) ( E11 0 0 ) ( B1 )
Q'*A*Z = ( A21 A22 0 ), Q'*E*Z = ( 0 0 0 ), Q'*B = ( B2 ),
( A31 0 0 ) ( 0 0 0 ) ( B3 )
C*Z = ( C1 C2 C3 ),
where E11 and A22 are upper triangular invertible matrices.
Step 2: Compute the reduced system as (Ar-lambda*Er,Br,Cr,Dr),
where
( A11 - A12*inv(A22)*A21, A13 ) ( E11 0 )
Ar = ( ), Er = ( ),
( A31 0 ) ( 0 0 )
( B1 - A12*inv(A22)*B2 )
Br = ( ), Cr = ( C1 - C2*inv(A22)*A21, C3 ),
( B3 )
Dr = D - C2*inv(A22)*B2.
Step 3: If desired (JOBS = 'S'), reduce the descriptor system to
the standard form
Ar <- diag(inv(E11),I)*Ar; Br <- diag(inv(E11),I)*Br;
Er = diag(I,0).
If L = N and LR = NR = RANKE, then if Step 3 is performed,
the resulting system is a standard state space system.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
If L = N, the algorithm requires 0( N**3 ) floating point
operations.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* TG01GD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER LMAX, NMAX, MMAX, PMAX
PARAMETER ( LMAX = 20, NMAX = 20, MMAX = 20, PMAX = 20 )
INTEGER LDA, LDB, LDC, LDD, LDE
PARAMETER ( LDA = LMAX, LDB = LMAX, LDC = PMAX,
$ LDD = PMAX, LDE = LMAX )
INTEGER LDWORK
PARAMETER ( LDWORK = MIN( LMAX, NMAX ) +
$ MAX( 3*NMAX - 1, MMAX, LMAX ) +
$ 2*LMAX*NMAX + LMAX*MMAX + PMAX*NMAX )
* .. Local Scalars ..
CHARACTER*1 JOBS
INTEGER I, INFO, INFRED, J, L, LR, M, N, NR, P, RANKE
DOUBLE PRECISION TOL
* .. Local Arrays ..
INTEGER IWORK(NMAX)
DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,NMAX),
$ D(LDD,MMAX), DWORK(LDWORK), E(LDE,NMAX)
* .. External Subroutines ..
EXTERNAL TG01GD
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) L, N, M, P, JOBS, TOL
IF ( L.LT.0 .OR. L.GT.LMAX ) THEN
WRITE ( NOUT, FMT = 99989 ) L
ELSE
IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99988 ) N
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,L )
READ ( NIN, FMT = * ) ( ( E(I,J), J = 1,N ), I = 1,L )
IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99987 ) M
ELSE
READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,L )
IF ( P.LT.0 .OR. P.GT.PMAX ) THEN
WRITE ( NOUT, FMT = 99986 ) P
ELSE
READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P )
READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,P )
* Find the reduced descriptor system
* (A-lambda E,B,C,D).
CALL TG01GD( JOBS, L, N, M, P, A, LDA, E, LDE, B, LDB,
$ C, LDC, D, LDD, LR, NR, RANKE, INFRED,
$ TOL, IWORK, DWORK, LDWORK, INFO )
*
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
WRITE ( NOUT, FMT = 99994 ) RANKE
WRITE ( NOUT, FMT = 99997 )
DO 10 I = 1, LR
WRITE ( NOUT, FMT = 99995 ) ( A(I,J), J = 1,NR )
10 CONTINUE
WRITE ( NOUT, FMT = 99996 )
DO 20 I = 1, LR
WRITE ( NOUT, FMT = 99995 ) ( E(I,J), J = 1,NR )
20 CONTINUE
WRITE ( NOUT, FMT = 99993 )
DO 30 I = 1, LR
WRITE ( NOUT, FMT = 99995 ) ( B(I,J), J = 1,M )
30 CONTINUE
WRITE ( NOUT, FMT = 99992 )
DO 40 I = 1, P
WRITE ( NOUT, FMT = 99995 ) ( C(I,J), J = 1,NR )
40 CONTINUE
WRITE ( NOUT, FMT = 99991 )
DO 50 I = 1, P
WRITE ( NOUT, FMT = 99995 ) ( D(I,J), J = 1,M )
50 CONTINUE
END IF
END IF
END IF
END IF
END IF
STOP
*
99999 FORMAT (' TG01GD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from TG01GD = ',I2)
99997 FORMAT (/' The reduced state dynamics matrix is ')
99996 FORMAT (/' The reduced descriptor matrix is ')
99995 FORMAT (20(1X,F8.4))
99994 FORMAT (' Rank of matrix E =', I5)
99993 FORMAT (/' The reduced input/state matrix is ')
99992 FORMAT (/' The reduced state/output matrix is ')
99991 FORMAT (/' The transformed feedthrough matrix is ')
99989 FORMAT (/' L is out of range.',/' L = ',I5)
99988 FORMAT (/' N is out of range.',/' N = ',I5)
99987 FORMAT (/' M is out of range.',/' M = ',I5)
99986 FORMAT (/' P is out of range.',/' P = ',I5)
END
</PRE>
<B>Program Data</B>
<PRE>
TG01GD EXAMPLE PROGRAM DATA
4 4 2 2 D 0.0
-1 0 0 3
0 0 1 2
1 1 0 4
0 0 0 0
1 2 0 0
0 1 0 1
3 9 6 3
0 0 2 0
1 0
0 0
0 1
1 1
-1 0 1 0
0 1 -1 1
1 0
1 1
</PRE>
<B>Program Results</B>
<PRE>
TG01GD EXAMPLE PROGRAM RESULTS
Rank of matrix E = 3
The reduced state dynamics matrix is
2.5102 -3.8550 -11.4533
-0.0697 0.0212 0.7015
0.3798 -0.1156 -3.8250
The reduced descriptor matrix is
10.1587 5.8230 1.3021
0.0000 -2.4684 -0.1896
0.0000 0.0000 1.0338
The reduced input/state matrix is
7.7100 1.6714
0.7678 1.1070
2.5428 0.6935
The reduced state/output matrix is
0.5477 -2.5000 -6.2610
-1.0954 1.0000 -0.8944
The transformed feedthrough matrix is
4.0000 1.0000
1.0000 1.0000
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|