File: TG01PD.html

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (498 lines) | stat: -rw-r--r-- 20,042 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
<HTML>
<HEAD><TITLE>TG01PD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>

<H2><A Name="TG01PD">TG01PD</A></H2>
<H3>
Bi-domain spectral splitting of a subpencil of a descriptor system
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>

<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
  To compute orthogonal transformation matrices Q and Z which
  reduce the regular pole pencil A-lambda*E of the descriptor system
  (A-lambda*E,B,C) to the generalized real Schur form with ordered
  generalized eigenvalues. The pair (A,E) is reduced to the form

             ( *  *  *  * )             ( *  *  *  * )
             (            )             (            )
             ( 0  A1 *  * )             ( 0  E1 *  * )
    Q'*A*Z = (            ) ,  Q'*E*Z = (            ) ,
             ( 0  0  A2 * )             ( 0  0  E2 * )
             (            )             (            )
             ( 0  0  0  * )             ( 0  0  0  * )

  where the subpencil A1-lambda*E1 contains the eigenvalues which
  belong to a suitably defined domain of interest and the subpencil
  A2-lambda*E2 contains the eigenvalues which are outside of the
  domain of interest.
  If JOBAE = 'S', the pair (A,E) is assumed to be already in a
  generalized real Schur form and the reduction is performed only
  on the subpencil A12 - lambda*E12 defined by rows and columns
  NLOW to NSUP of A - lambda*E.

</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
      SUBROUTINE TG01PD( DICO, STDOM, JOBAE, COMPQ, COMPZ, N, M, P,
     $                   NLOW, NSUP, ALPHA, A, LDA, E, LDE, B, LDB,
     $                   C, LDC, Q, LDQ, Z, LDZ, NDIM, ALPHAR, ALPHAI,
     $                   BETA, DWORK, LDWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER        COMPQ, COMPZ, DICO, JOBAE, STDOM
      INTEGER          INFO, LDA, LDB, LDC, LDE, LDQ, LDWORK, LDZ, M, N,
     $                 NDIM, NLOW, NSUP, P
      DOUBLE PRECISION ALPHA
C     .. Array Arguments ..
      DOUBLE PRECISION A(LDA,*), ALPHAI(*), ALPHAR(*), B(LDB,*),
     $                 BETA(*),  C(LDC,*),  DWORK(*),  E(LDE,*),
     $                 Q(LDQ,*), Z(LDZ,*)

</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>

<B>Mode Parameters</B>
<PRE>
  DICO    CHARACTER*1
          Specifies the type of the descriptor system as follows:
          = 'C':  continuous-time system;
          = 'D':  discrete-time system.

  STDOM   CHARACTER*1
          Specifies whether the domain of interest is of stability
          type (left part of complex plane or inside of a circle)
          or of instability type (right part of complex plane or
          outside of a circle) as follows:
          = 'S':  stability type domain;
          = 'U':  instability type domain.

  JOBAE   CHARACTER*1
          Specifies the shape of the matrix pair (A,E) on entry
          as follows:
          = 'S':  (A,E) is in a generalized real Schur form;
          = 'G':  A and E are general square dense matrices.

  COMPQ   CHARACTER*1
          = 'I':  Q is initialized to the unit matrix, and the
                  orthogonal matrix Q is returned;
          = 'U':  Q must contain an orthogonal matrix Q1 on entry,
                  and the product Q1*Q is returned.
                  This option can not be used when JOBAE = 'G'.

  COMPZ   CHARACTER*1
          = 'I':  Z is initialized to the unit matrix, and the
                  orthogonal matrix Z is returned;
          = 'U':  Z must contain an orthogonal matrix Z1 on entry,
                  and the product Z1*Z is returned.
                  This option can not be used when JOBAE = 'G'.

</PRE>
<B>Input/Output Parameters</B>
<PRE>
  N       (input) INTEGER
          The number of rows of the matrix B, the number of columns
          of the matrix C, and the order of the square matrices A
          and E.  N &gt;= 0.

  M       (input) INTEGER
          The number of columns of the matrix B.  M &gt;= 0.

  P       (input) INTEGER
          The number of rows of the matrix C.  P &gt;= 0.

  NLOW,   (input) INTEGER
  NSUP    (input) INTEGER
          NLOW and NSUP specify the boundary indices for the rows
          and columns of the principal subpencil of A - lambda*E
          whose diagonal blocks are to be reordered.
          0 &lt;= NLOW &lt;= NSUP &lt;= N,       if JOBAE = 'S'.
          NLOW = MIN( 1, N ), NSUP = N, if JOBAE = 'G'.

  ALPHA   (input) DOUBLE PRECISION
          The boundary of the domain of interest for the generalized
          eigenvalues of the pair (A,E). For a continuous-time
          system (DICO = 'C'), ALPHA is the boundary value for the
          real parts of the generalized eigenvalues, while for a
          discrete-time system (DICO = 'D'), ALPHA &gt;= 0 represents
          the boundary value for the moduli of the generalized
          eigenvalues.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N part of this array must
          contain the state dynamics matrix A.
          If JOBAE = 'S' then A must be a matrix in real Schur form.
          On exit, the leading N-by-N part of this array contains
          the matrix Q'*A*Z in real Schur form, with the elements
          below the first subdiagonal set to zero.
          The leading NDIM-by-NDIM part of the principal subpencil
          A12 - lambda*E12, defined by A12 := A(NLOW:NSUP,NLOW:NSUP)
          and E12 := E(NLOW:NSUP,NLOW:NSUP), has generalized
          eigenvalues in the domain of interest, and the trailing
          part of this subpencil has generalized eigenvalues outside
          the domain of interest.
          The domain of interest for eig(A12,E12), the generalized
          eigenvalues of the pair (A12,E12), is defined by the
          parameters ALPHA, DICO and STDOM as follows:
            For DICO = 'C':
               Real(eig(A12,E12)) &lt; ALPHA if STDOM = 'S';
               Real(eig(A12,E12)) &gt; ALPHA if STDOM = 'U'.
            For DICO = 'D':
               Abs(eig(A12,E12)) &lt; ALPHA if STDOM = 'S';
               Abs(eig(A12,E12)) &gt; ALPHA if STDOM = 'U'.

  LDA     INTEGER
          The leading dimension of the array A.  LDA &gt;= MAX(1,N).

  E       (input/output) DOUBLE PRECISION array, dimension (LDE,N)
          On entry, the leading N-by-N part of this array must
          contain the descriptor matrix E.
          If JOBAE = 'S', then E must be an upper triangular matrix.
          On exit, the leading N-by-N part of this array contains an
          upper triangular matrix Q'*E*Z, with the elements below
          the diagonal set to zero.
          The leading NDIM-by-NDIM part of the principal subpencil
          A12 - lambda*E12 (see description of A) has generalized
          eigenvalues in the domain of interest, and the trailing
          part of this subpencil has generalized eigenvalues outside
          the domain of interest.

  LDE     INTEGER
          The leading dimension of the array E.  LDE &gt;= MAX(1,N).

  B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
          On entry, the leading N-by-M part of this array must
          contain the input matrix B.
          On exit, the leading N-by-M part of this array contains
          the transformed input matrix Q'*B.

  LDB     INTEGER
          The leading dimension of the array B.  LDB &gt;= MAX(1,N).

  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
          On entry, the leading P-by-N part of this array must
          contain the output matrix C.
          On exit, the leading P-by-N part of this array contains
          the transformed output matrix C*Z.

  LDC     INTEGER
          The leading dimension of the array C.  LDC &gt;= MAX(1,P).

  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
          If COMPQ = 'I':  on entry, Q need not be set;
                           on exit, the leading N-by-N part of this
                           array contains the orthogonal matrix Q,
                           where Q' is the product of orthogonal
                           transformations which are applied to A,
                           E, and B on the left.
          If COMPQ = 'U':  on entry, the leading N-by-N part of this
                           array must contain an orthogonal matrix
                           Q1;
                           on exit, the leading N-by-N part of this
                           array contains the orthogonal matrix
                           Q1*Q.

  LDQ     INTEGER
          The leading dimension of the array Q. LDQ &gt;= MAX(1,N).

  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
          If COMPZ = 'I':  on entry, Z need not be set;
                           on exit, the leading N-by-N part of this
                           array contains the orthogonal matrix Z,
                           which is the product of orthogonal
                           transformations applied to A, E, and C
                           on the right.
          If COMPZ = 'U':  on entry, the leading N-by-N part of this
                           array must contain an orthogonal matrix
                           Z1;
                           on exit, the leading N-by-N part of this
                           array contains the orthogonal matrix
                           Z1*Z.

  LDZ     INTEGER
          The leading dimension of the array Z. LDZ &gt;= MAX(1,N).

  NDIM    (output) INTEGER
          The number of generalized eigenvalues of the principal
          subpencil A12 - lambda*E12 (see description of A) lying
          inside the domain of interest for eigenvalues.

  ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
  ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
  BETA    (output) DOUBLE PRECISION array, dimension (N)
          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N,
          are the generalized eigenvalues.
          ALPHAR(j) + ALPHAI(j)*i, and BETA(j), j = 1,...,N, are the
          diagonals of the complex Schur form (S,T) that would
          result if the 2-by-2 diagonal blocks of the real Schur
          form of (A,B) were further reduced to triangular form
          using 2-by-2 complex unitary transformations.
          If ALPHAI(j) is zero, then the j-th eigenvalue is real;
          if positive, then the j-th and (j+1)-st eigenvalues are a
          complex conjugate pair, with ALPHAI(j+1) negative.

</PRE>
<B>Workspace</B>
<PRE>
  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) returns the optimal value
          of LDWORK.

  LDWORK  INTEGER
          The length of the array DWORK.
          LDWORK &gt;= 8*N+16, if JOBAE = 'G';
          LDWORK &gt;= 4*N+16, if JOBAE = 'S'.
          For optimum performance LDWORK should be larger.

          If LDWORK = -1, then a workspace query is assumed; the
          routine only calculates the optimal size of the DWORK
          array, returns this value as the first entry of the DWORK
          array, and no error message related to LDWORK is issued by
          XERBLA.

</PRE>
<B>Error Indicator</B>
<PRE>
  INFO    INTEGER
          = 0:  successful exit;
          &lt; 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = 1:  the QZ algorithm failed to compute all generalized
                eigenvalues of the pair (A,E);
          = 2:  a failure occured during the ordering of the
                generalized real Schur form of the pair (A,E).

</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
  If JOBAE = 'G', the pair (A,E) is reduced to an ordered
  generalized real Schur form using an orthogonal equivalence
  transformation A &lt;-- Q'*A*Z and E &lt;-- Q'*E*Z. This transformation
  is determined so that the leading diagonal blocks of the resulting
  pair (A,E) have generalized eigenvalues in a suitably defined
  domain of interest. Then, the transformations are applied to the
  matrices B and C: B &lt;-- Q'*B and C &lt;-- C*Z.
  If JOBAE = 'S', then the diagonal blocks of the subpencil
  A12 - lambda*E12, defined by A12 := A(NLOW:NSUP,NLOW:NSUP)
  and E12 := E(NLOW:NSUP,NLOW:NSUP), are reordered using orthogonal
  equivalence transformations, such that the leading blocks have
  generalized eigenvalues in a suitably defined domain of interest.

</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>                                  3
  The algorithm requires about 25N  floating point operations.

</PRE>

<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
  None
</PRE>

<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
*     TG01PD EXAMPLE PROGRAM TEXT
*
*     .. Parameters ..
      DOUBLE PRECISION ZERO
      PARAMETER        ( ZERO = 0.0D0 )
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          NMAX, MMAX, PMAX
      PARAMETER        ( NMAX = 20, MMAX = 20, PMAX = 20 )
      INTEGER          LDA, LDB, LDC, LDE, LDQ, LDZ
      PARAMETER        ( LDA = NMAX, LDB = NMAX, LDC = PMAX,
     $                   LDE = NMAX, LDQ = NMAX, LDZ = NMAX )
      INTEGER          LDWORK
      PARAMETER        ( LDWORK = 8*NMAX+16 )
*     .. Local Scalars ..
      CHARACTER*1      COMPQ, COMPZ, DICO, JOBAE, STDOM
      INTEGER          I, INFO, J, M, N, NDIM, NLOW, NSUP, P
      DOUBLE PRECISION ALPHA, TOL
*     .. Local Arrays ..
      DOUBLE PRECISION A(LDA,NMAX),  ALPHAI(NMAX), ALPHAR(NMAX),
     $                 B(LDB,MMAX),    BETA(NMAX), C(LDC,NMAX),
     $                 DWORK(LDWORK), E(LDE,NMAX), Q(LDQ,NMAX),
     $                 Z(LDZ,NMAX)
*     .. External Functions ..
      LOGICAL          LSAME
      EXTERNAL         LSAME
*     .. External Subroutines ..
      EXTERNAL         TG01PD
*     .. Intrinsic Functions ..
      INTRINSIC        DCMPLX
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N, M, P, DICO, STDOM, JOBAE, COMPQ, COMPZ,
     $                      NLOW, NSUP, ALPHA, TOL
      IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99988 ) N
      ELSE
         READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
         READ ( NIN, FMT = * ) ( ( E(I,J), J = 1,N ), I = 1,N )
         IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
            WRITE ( NOUT, FMT = 99987 ) M
         ELSE
            READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,N )
            IF ( P.LT.0 .OR. P.GT.PMAX ) THEN
               WRITE ( NOUT, FMT = 99986 ) P
            ELSE
               READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P )
               IF ( LSAME( COMPQ, 'U' ) )
     $            READ ( NIN, FMT = * ) ( ( Q(I,J), J = 1,N ), I = 1,N )
               IF ( LSAME( COMPZ, 'U' ) )
     $            READ ( NIN, FMT = * ) ( ( Z(I,J), J = 1,N ), I = 1,N )
*              Find the reduced descriptor system
*              (A-lambda E,B,C).
               CALL TG01PD( DICO, STDOM, JOBAE, COMPQ, COMPZ, N, M, P,
     $                      NLOW, NSUP, ALPHA, A, LDA, E, LDE, B, LDB,
     $                      C, LDC, Q, LDQ, Z, LDZ, NDIM, ALPHAR,
     $                      ALPHAI, BETA, DWORK, LDWORK, INFO )
*
               IF ( INFO.NE.0 ) THEN
                  WRITE ( NOUT, FMT = 99998 ) INFO
               ELSE
                  WRITE ( NOUT, FMT = 99994 ) NDIM
                  WRITE ( NOUT, FMT = 99997 )
                  DO 10 I = 1, N
                     WRITE ( NOUT, FMT = 99995 ) ( A(I,J), J = 1,N )
   10             CONTINUE
                  WRITE ( NOUT, FMT = 99996 )
                  DO 20 I = 1, N
                     WRITE ( NOUT, FMT = 99995 ) ( E(I,J), J = 1,N )
   20             CONTINUE
                  WRITE ( NOUT, FMT = 99993 )
                  DO 30 I = 1, N
                     WRITE ( NOUT, FMT = 99995 ) ( B(I,J), J = 1,M )
   30             CONTINUE
                  WRITE ( NOUT, FMT = 99992 )
                  DO 40 I = 1, P
                     WRITE ( NOUT, FMT = 99995 ) ( C(I,J), J = 1,N )
   40             CONTINUE
                  WRITE ( NOUT, FMT = 99991 )
                  DO 50 I = 1, N
                     WRITE ( NOUT, FMT = 99995 ) ( Q(I,J), J = 1,N )
   50             CONTINUE
                  WRITE ( NOUT, FMT = 99990 )
                  DO 60 I = 1, N
                     WRITE ( NOUT, FMT = 99995 ) ( Z(I,J), J = 1,N )
   60             CONTINUE
                  WRITE ( NOUT, FMT = 99985 )
                  DO 70 I = 1, N
                     IF ( BETA(I).EQ.ZERO .OR. ALPHAI(I).EQ.ZERO ) THEN
                        WRITE ( NOUT, FMT = 99984 )
     $                     ALPHAR(I)/BETA(I)
                     ELSE
                        WRITE ( NOUT, FMT = 99984 )
     $                     DCMPLX( ALPHAR(I), ALPHAI(I) )/BETA(I)
                     END IF
   70             CONTINUE
               END IF
            END IF
         END IF
      END IF
      STOP
*
99999 FORMAT (' TG01PD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from TG01PD = ',I2)
99997 FORMAT (/' The transformed state dynamics matrix Q''*A*Z is ')
99996 FORMAT (/' The transformed descriptor matrix Q''*E*Z is ')
99995 FORMAT (20(1X,F8.4))
99994 FORMAT (' Number of eigenvalues in the domain =', I5)
99993 FORMAT (/' The transformed input/state matrix Q''*B is ')
99992 FORMAT (/' The transformed state/output matrix C*Z is ')
99991 FORMAT (/' The left transformation matrix Q is ')
99990 FORMAT (/' The right transformation matrix Z is ')
99988 FORMAT (/' N is out of range.',/' N = ',I5)
99987 FORMAT (/' M is out of range.',/' M = ',I5)
99986 FORMAT (/' P is out of range.',/' P = ',I5)
99985 FORMAT (/' The finite generalized eigenvalues are '/
     $         ' real  part     imag  part ')
99984 FORMAT (1X,F9.4,SP,F9.4,S,'i ')
      END
</PRE>
<B>Program Data</B>
<PRE>
TG01PD EXAMPLE PROGRAM DATA
  4     2     2     C     S     G     I     I     1     4     -1.E-7     0.0    
    -1     0     0     3
     0     0     1     2
     1     1     0     4
     0     0     0     0
     1     2     0     0
     0     1     0     1
     3     9     6     3
     0     0     2     0
     1     0
     0     0
     0     1
     1     1
    -1     0     1     0
     0     1    -1     1
</PRE>
<B>Program Results</B>
<PRE>
 TG01PD EXAMPLE PROGRAM RESULTS

 Number of eigenvalues in the domain =    1

 The transformed state dynamics matrix Q'*A*Z is 
  -1.6311   2.1641  -3.6829  -0.3369
   0.0000   0.4550  -1.9033   0.6425
   0.0000   0.0000   2.6950   0.6882
   0.0000   0.0000   0.0000   0.0000

 The transformed descriptor matrix Q'*E*Z is 
   0.4484   9.6340  -1.2601  -5.6475
   0.0000   3.3099   0.6641  -1.4869
   0.0000   0.0000   0.0000  -1.3765
   0.0000   0.0000   0.0000   2.0000

 The transformed input/state matrix Q'*B is 
   0.0232  -0.9413
  -0.7251  -0.2478
   0.6882  -0.2294
   1.0000   1.0000

 The transformed state/output matrix C*Z is 
  -0.8621   0.3754   0.3405   1.0000
  -0.1511  -1.1192   0.8513  -1.0000

 The left transformation matrix Q is 
   0.0232  -0.7251   0.6882   0.0000
  -0.3369   0.6425   0.6882   0.0000
  -0.9413  -0.2478  -0.2294   0.0000
   0.0000   0.0000   0.0000   1.0000

 The right transformation matrix Z is 
   0.8621  -0.3754  -0.3405   0.0000
  -0.4258  -0.9008  -0.0851   0.0000
   0.0000   0.0000   0.0000   1.0000
   0.2748  -0.2184   0.9364   0.0000

 The finite generalized eigenvalues are 
 real  part     imag  part 
   -3.6375
    0.1375
  Infinity
    0.0000
</PRE>

<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>