1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
<HTML>
<HEAD><TITLE>UD01CD - SLICOT Library Routine Documentation</TITLE>
</HEAD>
<BODY>
<H2><A Name="UD01CD">UD01CD</A></H2>
<H3>
Reading a sparse matrix polynomial
</H3>
<A HREF ="#Specification"><B>[Specification]</B></A>
<A HREF ="#Arguments"><B>[Arguments]</B></A>
<A HREF ="#Method"><B>[Method]</B></A>
<A HREF ="#References"><B>[References]</B></A>
<A HREF ="#Comments"><B>[Comments]</B></A>
<A HREF ="#Example"><B>[Example]</B></A>
<P>
<B><FONT SIZE="+1">Purpose</FONT></B>
<PRE>
To read the elements of a sparse matrix polynomial
dp-1 dp
P(s) = P(0) + P(1) * s + . . . + P(dp-1) * s + P(dp) * s .
</PRE>
<A name="Specification"><B><FONT SIZE="+1">Specification</FONT></B></A>
<PRE>
SUBROUTINE UD01CD( MP, NP, DP, NIN, P, LDP1, LDP2, INFO )
C .. Scalar Arguments ..
INTEGER DP, INFO, LDP1, LDP2, MP, NP, NIN
C .. Array Arguments ..
DOUBLE PRECISION P(LDP1,LDP2,*)
</PRE>
<A name="Arguments"><B><FONT SIZE="+1">Arguments</FONT></B></A>
<P>
</PRE>
<B>Input/Output Parameters</B>
<PRE>
MP (input) INTEGER
The number of rows of the matrix polynomial P(s).
MP >= 1.
NP (input) INTEGER
The number of columns of the matrix polynomial P(s).
NP >= 1.
DP (input) INTEGER
The degree of the matrix polynomial P(s). DP >= 0.
NIN (input) INTEGER
The input channel from which the elements of P(s) are
read. NIN >= 0.
P (output) DOUBLE PRECISION array, dimension
(LDP1,LDP2,DP+1)
The leading MP-by-NP-by-(DP+1) part of this array contains
the coefficients of the matrix polynomial P(s).
Specifically, P(i,j,k) contains the coefficient of
s**(k-1) of the polynomial which is the (i,j)-th element
of P(s), where i = 1,2,...,MP, j = 1,2,...,NP and
k = 1,2,...,DP+1.
The not assigned elements are set to zero.
LDP1 INTEGER
The leading dimension of array P. LDP1 >= MP.
LDP2 INTEGER
The second dimension of array P. LDP2 >= NP.
</PRE>
<B>Error Indicator</B>
<PRE>
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1 : if a row index i is read with i < 1 or i > MP or
a column index j is read with j < 1 or j > NP or
a coefficient degree d is read with d < 0 or
d > DP + 1. This is a warning.
</PRE>
<A name="Method"><B><FONT SIZE="+1">Method</FONT></B></A>
<PRE>
First, the elements P(i,j,k) with 1 <= i <= MP, 1 <= j <= NP and
1 <= k <= DP + 1 are set to zero. Next the nonzero (polynomial)
elements are read from the input file NIN. Each nonzero element is
given by the values i, j, d, P(i,j,k), k = 1, ..., d+1, where d is
the degree and P(i,j,k) is the coefficient of s**(k-1) in the
(i,j)-th element of P(s), i.e., let
d
P (s) = P (0) + P (1) * s + . . . + P (d) * s
i,j i,j i,j i,j
be the nonzero (i,j)-th element of the matrix polynomial P(s).
Then P(i,j,k) corresponds to coefficient P (k-1), k = 1,...,d+1.
i,j
For each nonzero element, the values i, j, and d are read as one
record of the file NIN, and the values P(i,j,k), k = 1,...,d+1,
are read as the following record.
The routine terminates after the last line has been read.
</PRE>
<A name="References"><B><FONT SIZE="+1">References</FONT></B></A>
<PRE>
None.
</PRE>
<A name="Numerical Aspects"><B><FONT SIZE="+1">Numerical Aspects</FONT></B></A>
<PRE>
None.
</PRE>
<A name="Comments"><B><FONT SIZE="+1">Further Comments</FONT></B></A>
<PRE>
None
</PRE>
<A name="Example"><B><FONT SIZE="+1">Example</FONT></B></A>
<P>
<B>Program Text</B>
<PRE>
* UD01CD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER MPMAX, NPMAX, DPMAX
PARAMETER ( MPMAX = 10, NPMAX = 10, DPMAX = 5 )
INTEGER LDP1, LDP2
PARAMETER ( LDP1 = MPMAX, LDP2 = NPMAX )
* .. Local Scalars ..
INTEGER DP, INFO, INFO1, L, MP, NP
* .. Local Arrays ..
DOUBLE PRECISION P(LDP1,LDP2,DPMAX)
* .. External Subroutines ..
EXTERNAL UD01CD, UD01ND
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) MP, NP, DP
IF ( MP.LE.0 .OR. MP.GT.MPMAX ) THEN
WRITE ( NOUT, FMT = 99994 ) MP
ELSE IF ( NP.LE.0 .OR. NP.GT.NPMAX ) THEN
WRITE ( NOUT, FMT = 99995 ) NP
ELSE IF ( DP.LT.0 .OR. DP.GT.DPMAX ) THEN
WRITE ( NOUT, FMT = 99993 ) DP
ELSE
* Read the coefficients of the matrix polynomial P(s).
CALL UD01CD( MP, NP, DP, NIN, P, LDP1, LDP2, INFO )
IF ( INFO.GE.0 ) THEN
WRITE ( NOUT, 99996 ) MP, NP, DP
* Write the coefficients of the matrix polynomial P(s).
L = 5
CALL UD01ND( MP, NP, DP, L, NOUT, P, LDP1, LDP2, ' P',
$ INFO1 )
IF ( INFO1.NE.0 )
$ WRITE ( NOUT, FMT = 99997 ) INFO1
END IF
IF ( INFO.NE.0 )
$ WRITE ( NOUT, FMT = 99998 ) INFO
END IF
STOP
*
99999 FORMAT (' UD01CD EXAMPLE PROGRAM RESULTS', /1X)
99998 FORMAT (' INFO on exit from UD01CD = ',I2)
99997 FORMAT (' INFO on exit from UD01ND = ',I2)
99996 FORMAT (' MP =', I2, 2X, ' NP =', I2, 3X, 'DP =', I2)
99995 FORMAT (/' NP is out of range.',/' NP = ',I5)
99994 FORMAT (/' MP is out of range.',/' MP = ',I5)
99993 FORMAT (/' DP is out of range.',/' DP = ',I5)
END
</PRE>
<B>Program Data</B>
<PRE>
UD01CD EXAMPLE PROGRAM DATA
4 3 2
1 1 1
1.0 1.0
2 2 2
2.0 0.0 1.0
3 3 2
0.0 3.0 1.0
4 1 0
4.0
</PRE>
<B>Program Results</B>
<PRE>
UD01CD EXAMPLE PROGRAM RESULTS
MP = 4 NP = 3 DP = 2
P( 0) ( 4X 3)
1 2 3
1 0.1000000D+01 0.0000000D+00 0.0000000D+00
2 0.0000000D+00 0.2000000D+01 0.0000000D+00
3 0.0000000D+00 0.0000000D+00 0.0000000D+00
4 0.4000000D+01 0.0000000D+00 0.0000000D+00
P( 1) ( 4X 3)
1 2 3
1 0.1000000D+01 0.0000000D+00 0.0000000D+00
2 0.0000000D+00 0.0000000D+00 0.0000000D+00
3 0.0000000D+00 0.0000000D+00 0.3000000D+01
4 0.0000000D+00 0.0000000D+00 0.0000000D+00
P( 2) ( 4X 3)
1 2 3
1 0.0000000D+00 0.0000000D+00 0.0000000D+00
2 0.0000000D+00 0.1000000D+01 0.0000000D+00
3 0.0000000D+00 0.0000000D+00 0.1000000D+01
4 0.0000000D+00 0.0000000D+00 0.0000000D+00
</PRE>
<HR>
<p>
<A HREF=..\libindex.html><B>Return to index</B></A></BODY>
</HTML>
|