1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
|
<HTML>
<HEAD><title>On-Line SLICOT Overview</title></HEAD>
<BODY>
<H1>SLICOT LIBRARY INDEX</H1>
<HR>
To go to the beginning of a chapter click on the appropriate letter below: <p>
<center>
<A HREF = "#A"><B>A</B></A> ;
<A HREF = "#B"><B>B</B></A> ;
<A HREF = "#C"><B>C</B></A> ;
<A HREF = "#D"><B>D</B></A> ;
<A HREF = "#F"><B>F</B></A> ;
<A HREF = "#I"><B>I</B></A> ;
<A HREF = "#M"><B>M</B></A> ;
<A HREF = "#N"><B>N</B></A> ;
<A HREF = "#S"><B>S</B></A> ;
<A HREF = "#T"><B>T</B></A> ;
<A HREF = "#U"><B>U</B></A> ;
</center>
<BR>
or <A href="http://www.slicot.org/index.php?site=home">
<b>Return to SLICOT homepage</b></A>
<BR>
or <A href="support.html">
<b>Go to SLICOT Supporting Routines Index</b></A>
<p>
<HR>
<A NAME="A"><H2>A - Analysis Routines</H2></A>
<h3>AB - State-Space Analysis</h3>
<h4>Canonical and Quasi Canonical Forms</h4>
<PRE>
<A href="AB01MD.html">
<B>AB01MD</B></A> Orthogonal controllability form for single-input system
<A href="AB01ND.html">
<B>AB01ND</B></A> Orthogonal controllability staircase form for multi-input system
<A href="AB01OD.html">
<B>AB01OD</B></A> Staircase form for multi-input system using orthogonal transformations
</PRE>
<h4>Continuous/Discrete Time</h4>
<PRE>
<A href="AB04MD.html">
<B>AB04MD</B></A> Discrete-time <-> continuous-time conversion by bilinear transformation
</PRE>
<h4>Interconnections of Subsystems</h4>
<PRE>
<A href="AB05MD.html">
<B>AB05MD</B></A> Cascade inter-connection of two systems in state-space form
<A href="AB05ND.html">
<B>AB05ND</B></A> Feedback inter-connection of two systems in state-space form
<A href="AB05OD.html">
<B>AB05OD</B></A> Rowwise concatenation of two systems in state-space form
<A href="AB05PD.html">
<B>AB05PD</B></A> Parallel inter-connection of two systems in state-space form
<A href="AB05QD.html">
<B>AB05QD</B></A> Appending two systems in state-space form
<A href="AB05RD.html">
<B>AB05RD</B></A> Closed-loop system for a mixed output and state feedback control law
<A href="AB05SD.html">
<B>AB05SD</B></A> Closed-loop system for an output feedback control law
</PRE>
<h4>Inverse and Dual Systems</h4>
<PRE>
<A href="AB07MD.html">
<B>AB07MD</B></A> Dual of a given state-space representation
<A href="AB07ND.html">
<B>AB07ND</B></A> Inverse of a given state-space representation
</PRE>
<h4>Poles, Zeros, Gain</h4>
<PRE>
<A href="AB08MD.html">
<B>AB08MD</B></A> Normal rank of the transfer-function matrix of a state space model
<A href="AB08MZ.html">
<B>AB08MZ</B></A> Normal rank of the transfer-function matrix of a state space model (complex case)
<A href="AB08ND.html">
<B>AB08ND</B></A> System zeros and Kronecker structure of system pencil
<A href="AB08NW.html">
<B>AB08NW</B></A> System zeros and singular and infinite Kronecker structure of system pencil
<A href="AB08NZ.html">
<B>AB08NZ</B></A> System zeros and Kronecker structure of system pencil (complex case)
</PRE>
<h4>Model Reduction</h4>
<PRE>
<A href="AB09AD.html">
<B>AB09AD</B></A> Balance & Truncate model reduction
<A href="AB09BD.html">
<B>AB09BD</B></A> Singular perturbation approximation based model reduction
<A href="AB09CD.html">
<B>AB09CD</B></A> Hankel norm approximation based model reduction
<A href="AB09DD.html">
<B>AB09DD</B></A> Singular perturbation approximation formulas
<A href="AB09ED.html">
<B>AB09ED</B></A> Hankel norm approximation based model reduction of unstable systems
<A href="AB09FD.html">
<B>AB09FD</B></A> Balance & Truncate model reduction of coprime factors
<A href="AB09GD.html">
<B>AB09GD</B></A> Singular perturbation approximation of coprime factors
<A href="AB09HD.html">
<B>AB09HD</B></A> Stochastic balancing based model reduction
<A href="AB09ID.html">
<B>AB09ID</B></A> Frequency-weighted model reduction based on balancing techniques
<A href="AB09JD.html">
<B>AB09JD</B></A> Frequency-weighted Hankel norm approximation with invertible weights
<A href="AB09KD.html">
<B>AB09KD</B></A> Frequency-weighted Hankel-norm approximation
<A href="AB09MD.html">
<B>AB09MD</B></A> Balance & Truncate model reduction for the stable part
<A href="AB09ND.html">
<B>AB09ND</B></A> Singular perturbation approximation based model reduction for the
stable part
</PRE>
<h4>System Norms</h4>
<PRE>
<A href="AB13AD.html">
<B>AB13AD</B></A> Hankel-norm of the stable projection
<A href="AB13BD.html">
<B>AB13BD</B></A> H2 or L2 norm of a system
<A href="AB13CD.html">
<B>AB13CD</B></A> H-infinity norm of a continuous-time stable system
(obsolete, replaced by AB13DD)
<A href="AB13DD.html">
<B>AB13DD</B></A> L-infinity norm of a state space system
<A href="AB13HD.html">
<B>AB13HD</B></A> L-infinity norm of a state space system in standard or
in descriptor form
<A href="AB13ED.html">
<B>AB13ED</B></A> Complex stability radius, using bisection
<A href="AB13FD.html">
<B>AB13FD</B></A> Complex stability radius, using bisection and SVD
<A href="AB13ID.html">
<B>AB13ID</B></A> Properness of the transfer function matrix of a descriptor system
<A href="AB13MD.html">
<B>AB13MD</B></A> Upper bound on the structured singular value for a square
complex matrix
</PRE>
<h3>AG - Generalized State-Space Analysis</h3>
<h4>Inverse and Dual Systems</h4>
<PRE>
<A href="AG07BD.html">
<B>AG07BD</B></A> Descriptor inverse of a state-space or descriptor representation
</PRE>
<h4>Poles, Zeros, Gain</h4>
<PRE>
<A href="AG08BD.html">
<B>AG08BD</B></A> Zeros and Kronecker structure of a descriptor system pencil
<A href="AG08BZ.html">
<B>AG08BZ</B></A> Zeros and Kronecker structure of a descriptor system pencil (complex case)
</PRE>
<HR>
<A NAME="B"><H2>B - Benchmark and Test Problems</H2></A>
<h3>BB - State-space Models</h3>
<PRE>
<A href="BB01AD.html">
<B>BB01AD</B></A> Benchmark examples for continuous-time Riccati equations
<A href="BB02AD.html">
<B>BB02AD</B></A> Benchmark examples for discrete-time Riccati equations
<A href="BB03AD.html">
<B>BB03AD</B></A> Benchmark examples of (generalized) continuous-time Lyapunov equations
<A href="BB04AD.html">
<B>BB04AD</B></A> Benchmark examples of (generalized) discrete-time Lyapunov equations
</PRE>
<h3>BD - Generalized State-space Models</h3>
<PRE>
<A href="BD01AD.html">
<B>BD01AD</B></A> Benchmark examples of continuous-time systems
<A href="BD02AD.html">
<B>BD02AD</B></A> Benchmark examples of discrete-time systems
</PRE>
<HR>
<A NAME="C"><H2>C - Adaptive Control</H2></A>
<HR>
<A NAME="D"><H2>D - Data Analysis</H2></A>
<h3>DE - Covariances</h3>
<PRE>
<A href="DE01OD.html">
<B>DE01OD</B></A> Convolution or deconvolution of two signals
<A href="DE01PD.html">
<B>DE01PD</B></A> Convolution or deconvolution of two real signals using Hartley transform
</PRE>
<h3>DF - Spectra</h3>
<PRE>
<A href="DF01MD.html">
<B>DF01MD</B></A> Sine transform or cosine transform of a real signal
</PRE>
<h3>DG - Discrete Fourier and Hartley Transforms</h3>
<PRE>
<A href="DG01MD.html">
<B>DG01MD</B></A> Discrete Fourier transform of a complex signal
<A href="DG01ND.html">
<B>DG01ND</B></A> Discrete Fourier transform of a real signal
<A href="DG01OD.html">
<B>DG01OD</B></A> Scrambled discrete Hartley transform of a real signal
</PRE>
<h3>DK - Windowing</h3>
<PRE>
<A href="DK01MD.html">
<B>DK01MD</B></A> Anti-aliasing window applied to a real signal
</PRE>
<HR>
<A NAME="F"><H2>F - Filtering</H2></A>
<h3>FB - Kalman Filters</h3>
<PRE>
<A href="FB01QD.html">
<B>FB01QD</B></A> Time-varying square root covariance filter (dense matrices)
<A href="FB01RD.html">
<B>FB01RD</B></A> Time-invariant square root covariance filter (Hessenberg form)
<A href="FB01SD.html">
<B>FB01SD</B></A> Time-varying square root information filter (dense matrices)
<A href="FB01TD.html">
<B>FB01TD</B></A> Time-invariant square root information filter (Hessenberg form)
<A href="FB01VD.html">
<B>FB01VD</B></A> One recursion of the conventional Kalman filter
</PRE>
<h3>FD - Fast Recursive Least Squares Filters</h3>
<PRE>
<A href="FD01AD.html">
<B>FD01AD</B></A> Fast recursive least-squares filter
</PRE>
<HR>
<A NAME="I"><H2>I - Identification</H2></A>
<h3>IB - Subspace Identification</h3>
<h4>Time Invariant State-space Systems</h4>
<PRE>
<A href="IB01AD.html">
<B>IB01AD</B></A> Input-output data preprocessing and finding the system order
<A href="IB01BD.html">
<B>IB01BD</B></A> Estimating the system matrices, covariances, and Kalman gain
<A href="IB01CD.html">
<B>IB01CD</B></A> Estimating the initial state and the system matrices B and D
</PRE>
<h4>Wiener Systems</h4>
<PRE>
<A href="IB03AD.html">
<B>IB03AD</B></A> Estimating a Wiener system by a Levenberg-Marquardt algorithm
(Cholesky-based or conjugate gradients solver)
<A href="IB03BD.html">
<B>IB03BD</B></A> Estimating a Wiener system by a MINPACK-like Levenberg-Marquardt
algorithm
</PRE>
<HR>
<A NAME="M"><H2>M - Mathematical Routines</H2></A>
<h3>MB - Linear Algebra</h3>
<h4>Basic Linear Algebra Manipulations</h4>
<PRE>
<A href="MB01PD.html">
<B>MB01PD</B></A> Matrix scaling (higher level routine)
<A href="MB01QD.html">
<B>MB01QD</B></A> Matrix scaling (lower level routine)
<A href="MB01RB.html">
<B>MB01RB</B></A> Computation of a triangle of matrix expression alpha*R + beta*A*B
or alpha*R + beta*B*A ( BLAS 3 version)
<A href="MB01RD.html">
<B>MB01RD</B></A> Computation of matrix expression alpha*R + beta*A*X*trans(A)
<A href="MB01TD.html">
<B>MB01TD</B></A> Product of two upper quasi-triangular matrices
<A href="MB01UD.html">
<B>MB01UD</B></A> Computation of matrix expressions alpha*H*A or alpha*A*H,
with H an upper Hessenberg matrix
<A href="MB01UX.html">
<B>MB01UX</B></A> Computation of matrix expressions alpha*T*A or alpha*A*T, T quasi-triangular
<A href="MB01UY.html">
<B>MB01UY</B></A> Computation of matrix expressions alpha*T*A or alpha*A*T, over T, T triangular
<A href="MB01UZ.html">
<B>MB01UZ</B></A> Computation of matrix expressions alpha*T*A or alpha*A*T, over T, T triangular
(complex version)
<A href="MB01WD.html">
<B>MB01WD</B></A> Residuals of Lyapunov or Stein equations for Cholesky factored
solutions
<A href="MB01XD.html">
<B>MB01XD</B></A> Computation of the product U'*U or L*L', with U and L upper and
lower triangular matrices (block algorithm)
<A href="MB01YD.html">
<B>MB01YD</B></A> Symmetric rank k operation C := alpha*A*A' + beta*C, C symmetric
<A href="MB01ZD.html">
<B>MB01ZD</B></A> Computation of matrix expressions H := alpha*T*H, or H := alpha*H*T,
with H Hessenberg-like, T triangular
</PRE>
<h4>Linear Equations and Least Squares</h4>
<PRE>
<A href="MB02CD.html">
<B>MB02CD</B></A> Cholesky factorization of a positive definite block Toeplitz matrix
<A href="MB02DD.html">
<B>MB02DD</B></A> Updating Cholesky factorization of a positive definite block
Toeplitz matrix
<A href="MB02ED.html">
<B>MB02ED</B></A> Solution of T*X = B or X*T = B, with T a positive definite
block Toeplitz matrix
<A href="MB02FD.html">
<B>MB02FD</B></A> Incomplete Cholesky factor of a positive definite block Toeplitz matrix
<A href="MB02GD.html">
<B>MB02GD</B></A> Cholesky factorization of a banded symmetric positive definite
block Toeplitz matrix
<A href="MB02HD.html">
<B>MB02HD</B></A> Cholesky factorization of the matrix T'*T, with T a banded
block Toeplitz matrix of full rank
<A href="MB02ID.html">
<B>MB02ID</B></A> Solution of over- or underdetermined linear systems with a full rank
block Toeplitz matrix
<A href="MB02JD.html">
<B>MB02JD</B></A> Full QR factorization of a block Toeplitz matrix of full rank
<A href="MB02JX.html">
<B>MB02JX</B></A> Low rank QR factorization with column pivoting of a block Toeplitz matrix
<A href="MB02KD.html">
<B>MB02KD</B></A> Computation of the product C = alpha*op( T )*B + beta*C, with T
a block Toeplitz matrix
<A href="MB02MD.html">
<B>MB02MD</B></A> Solution of Total Least-Squares problem using a SVD approach
<A href="MB02ND.html">
<B>MB02ND</B></A> Solution of Total Least-Squares problem using a partial SVD approach
<A href="MB02OD.html">
<B>MB02OD</B></A> Solution of op(A)*X = alpha*B, or X*op(A) = alpha*B, A triangular
<A href="MB02PD.html">
<B>MB02PD</B></A> Solution of matrix equation op(A)*X = B, with error bounds
and condition estimates
<A href="MB02QD.html">
<B>MB02QD</B></A> Solution, optionally corresponding to specified free elements,
of a linear least squares problem
<A href="MB02RD.html">
<B>MB02RD</B></A> Solution of a linear system with upper Hessenberg matrix
<A href="MB02RZ.html">
<B>MB02RZ</B></A> Solution of a linear system with complex upper Hessenberg matrix
<A href="MB02SD.html">
<B>MB02SD</B></A> LU factorization of an upper Hessenberg matrix
<A href="MB02SZ.html">
<B>MB02SZ</B></A> LU factorization of a complex upper Hessenberg matrix
<A href="MB02TD.html">
<B>MB02TD</B></A> Condition number of an upper Hessenberg matrix
<A href="MB02TZ.html">
<B>MB02TZ</B></A> Condition number of a complex upper Hessenberg matrix
<A href="MB02UD.html">
<B>MB02UD</B></A> Minimum norm least squares solution of op(R)*X = B, or X*op(R) = B,
using singular value decomposition (R upper triangular)
<A href="MB02VD.html">
<B>MB02VD</B></A> Solution of X*op(A) = B
</PRE>
<h4>Eigenvalues and Eigenvectors</h4>
<PRE>
<A href="MB03LF.html">
<B>MB03LF</B></A> Eigenvalues and right deflating subspace of a real
skew-Hamiltonian/Hamiltonian pencil in factored form
<A href="MB03FZ.html">
<B>MB03FZ</B></A> Eigenvalues and right deflating subspace of a complex
skew-Hamiltonian/Hamiltonian pencil in factored form
<A href="MB03LD.html">
<B>MB03LD</B></A> Eigenvalues and right deflating subspace of a real
skew-Hamiltonian/Hamiltonian pencil
<A href="MB03LP.html">
<B>MB03LP</B></A> Eigenvalues and right deflating subspace of a real
skew-Hamiltonian/Hamiltonian pencil (applying transformations on panels of columns)
<A href="MB03LZ.html">
<B>MB03LZ</B></A> Eigenvalues and right deflating subspace of a complex
skew-Hamiltonian/Hamiltonian pencil
<A href="MB3LZP.html">
<B>MB3LZP</B></A> Eigenvalues and right deflating subspace of a complex
skew-Hamiltonian/Hamiltonian pencil (applying transformations on panels of columns)
<A href="MB03MD.html">
<B>MB03MD</B></A> Upper bound for L singular values of a bidiagonal matrix
<A href="MB03ND.html">
<B>MB03ND</B></A> Number of singular values of a bidiagonal matrix less than a bound
<A href="MB03OD.html">
<B>MB03OD</B></A> Matrix rank determination by incremental condition estimation
<A href="MB03PD.html">
<B>MB03PD</B></A> Matrix rank determination (row pivoting)
<A href="MB03QD.html">
<B>MB03QD</B></A> Reordering of the diagonal blocks of a real Schur matrix
<A href="MB03QG.html">
<B>MB03QG</B></A> Reordering of the diagonal blocks of principal subpencil of
a real Schur-triangular matrix pencil
<A href="MB03RD.html">
<B>MB03RD</B></A> Reduction of a real Schur matrix to a block-diagonal form
<A href="MB03RZ.html">
<B>MB03RZ</B></A> Reduction of a complex Schur matrix to a block-diagonal form
<A href="MB03SD.html">
<B>MB03SD</B></A> Eigenvalues of a square-reduced Hamiltonian matrix
<A href="MB03TD.html">
<B>MB03TD</B></A> Reordering the diagonal blocks of a matrix in (skew-)Hamiltonian Schur form
<A href="MB03UD.html">
<B>MB03UD</B></A> Singular value decomposition of an upper triangular matrix
<A href="MB03VD.html">
<B>MB03VD</B></A> Periodic Hessenberg form of a product of matrices
<A href="MB03VW.html">
<B>MB03VW</B></A> Periodic Hessenberg form of a formal product of matrices
<A href="MB03WD.html">
<B>MB03WD</B></A> Periodic Schur decomposition and eigenvalues of a product of
matrices in periodic Hessenberg form
<A href="MB03XD.html">
<B>MB03XD</B></A> Eigenvalues of a Hamiltonian matrix
<A href="MB03XZ.html">
<B>MB03XZ</B></A> Eigenvalues of a complex Hamiltonian matrix
<A href="MB03XP.html">
<B>MB03XP</B></A> Periodic Schur decomposition and eigenvalues of a matrix product A*B,
A upper Hessenberg and B upper triangular
<A href="MB03YD.html">
<B>MB03YD</B></A> Periodic QR iteration
<A href="MB03ZD.html">
<B>MB03ZD</B></A> Stable and unstable invariant subspaces for a dichotomic Hamiltonian matrix
</PRE>
<h4>Decompositions and Transformations</h4>
<PRE>
<A href="MB04AD.html">
<B>MB04AD</B></A> Eigenvalues and generalized symplectic URV decomposition of a real
skew-Hamiltonian/Hamiltonian pencil in factored form
<A href="MB04AZ.html">
<B>MB04AZ</B></A> Eigenvalues of a complex skew-Hamiltonian/Hamiltonian pencil in factored form
<A href="MB04BD.html">
<B>MB04BD</B></A> Eigenvalues and orthogonal decomposition of a real
skew-Hamiltonian/Hamiltonian pencil
<A href="MB04BP.html">
<B>MB04BP</B></A> Eigenvalues and orthogonal decomposition of a real
skew-Hamiltonian/Hamiltonian pencil (applying transformations on panels of columns)
<A href="MB04BZ.html">
<B>MB04BZ</B></A> Eigenvalues of a complex skew-Hamiltonian/Hamiltonian pencil
<A href="MB04DL.html">
<B>MB04DL</B></A> Balancing a real matrix pencil, optionally avoiding large
norms for the scaled (sub)matrices
<A href="MB4DLZ.html">
<B>MB4DLZ</B></A> Balancing a complex matrix pencil, optionally avoiding large
norms for the scaled (sub)matrices
<A href="MB04DP.html">
<B>MB04DP</B></A> Balancing a real skew-Hamiltonian/Hamiltonian matrix pencil,
optionally avoiding large norms for the scaled (sub)matrices
<A href="MB4DPZ.html">
<B>MB4DPZ</B></A> Balancing a complex skew-Hamiltonian/Hamiltonian matrix pencil,
optionally avoiding large norms for the scaled (sub)matrices
<A href="MB04ED.html">
<B>MB04ED</B></A> Eigenvalues and orthogonal decomposition of a real
skew-Hamiltonian/skew-Hamiltonian pencil in factored form
<A href="MB04FD.html">
<B>MB04FD</B></A> Eigenvalues and orthogonal decomposition of a real
skew-Hamiltonian/skew-Hamiltonian pencil
<A href="MB04FP.html">
<B>MB04FP</B></A> Eigenvalues and orthogonal decomposition of a real
skew-Hamiltonian/skew-Hamiltonian pencil (applying transformations on panels of columns)
<A href="MB04GD.html">
<B>MB04GD</B></A> RQ factorization of a matrix with row pivoting
<A href="MB04ID.html">
<B>MB04ID</B></A> QR factorization of a matrix with a lower left zero triangle
<A href="MB04IZ.html">
<B>MB04IZ</B></A> QR factorization of a matrix with a lower left zero triangle (complex case)
<A href="MB04JD.html">
<B>MB04JD</B></A> LQ factorization of a matrix with an upper right zero triangle
<A href="MB04KD.html">
<B>MB04KD</B></A> QR factorization of a special structured block matrix
<A href="MB04LD.html">
<B>MB04LD</B></A> LQ factorization of a special structured block matrix
<A href="MB04MD.html">
<B>MB04MD</B></A> Balancing a general real matrix
<A href="MB04ND.html">
<B>MB04ND</B></A> RQ factorization of a special structured block matrix
<A href="MB04OD.html">
<B>MB04OD</B></A> QR factorization of a special structured block matrix (variant)
<A href="MB04PB.html">
<B>MB04PB</B></A> Paige/Van Loan form of a Hamiltonian matrix
<A href="MB04RD.html">
<B>MB04RD</B></A> Reduction of a real matrix pencil in generalized real Schur form to
a block-diagonal form
<A href="MB04RT.html">
<B>MB04RT</B></A> Solution of a generalized real Sylvester equation with matrix pairs
in generalized real Schur form (blocked version)
<A href="MB04RW.html">
<B>MB04RW</B></A> Solution of a generalized complex Sylvester equation with matrix pairs
in generalized complex Schur form (blocked version)
<A href="MB04RZ.html">
<B>MB04RZ</B></A> Reduction of a complex matrix pencil in generalized complex Schur form to
a block-diagonal form
<A href="MB04TB.html">
<B>MB04TB</B></A> Symplectic URV decomposition of a real 2N-by-2N matrix
<A href="MB04UD.html">
<B>MB04UD</B></A> Unitary column echelon form for a rectangular matrix
<A href="MB04VD.html">
<B>MB04VD</B></A> Upper block triangular form for a rectangular pencil
<A href="MB04XD.html">
<B>MB04XD</B></A> Basis for left/right null singular subspace of a matrix
<A href="MB04YD.html">
<B>MB04YD</B></A> Partial diagonalization of a bidiagonal matrix
<A href="MB04ZD.html">
<B>MB04ZD</B></A> Transforming a Hamiltonian matrix into a square-reduced form
</PRE>
<h4>Matrix Functions</h4>
<PRE>
<A href="MB05MD.html">
<B>MB05MD</B></A> Matrix exponential for a real non-defective matrix
<A href="MB05ND.html">
<B>MB05ND</B></A> Matrix exponential and integral for a real matrix
<A href="MB05OD.html">
<B>MB05OD</B></A> Matrix exponential for a real matrix, with accuracy estimate
</PRE>
<h3>MC - Polynomial and Rational Function Manipulation</h3>
<h4>Scalar Polynomials</h4>
<PRE>
<A href="MC01MD.html">
<B>MC01MD</B></A> The leading coefficients of the shifted polynomial
<A href="MC01ND.html">
<B>MC01ND</B></A> Value of a real polynomial at a given complex point
<A href="MC01OD.html">
<B>MC01OD</B></A> Coefficients of a complex polynomial, given its zeros
<A href="MC01PD.html">
<B>MC01PD</B></A> Coefficients of a real polynomial, given its zeros
<A href="MC01QD.html">
<B>MC01QD</B></A> Quotient and remainder polynomials for polynomial division
<A href="MC01RD.html">
<B>MC01RD</B></A> Polynomial operation P(x) = P1(x) P2(x) + alpha P3(x)
<A href="MC01SD.html">
<B>MC01SD</B></A> Scaling coefficients of a real polynomial for minimal variation
<A href="MC01TD.html">
<B>MC01TD</B></A> Checking stability of a given real polynomial
<A href="MC01VD.html">
<B>MC01VD</B></A> Roots of a quadratic equation with real coefficients
<A href="MC01WD.html">
<B>MC01WD</B></A> Quotient and remainder polynomials for a quadratic denominator
<A href="MC01XD.html">
<B>MC01XD</B></A> Roots of a third order polynomial
</PRE>
<h4>Polynomial Matrices</h4>
<PRE>
<A href="MC03MD.html">
<B>MC03MD</B></A> Real polynomial matrix operation P(x) = P1(x) P2(x) + alpha P3(x)
<A href="MC03ND.html">
<B>MC03ND</B></A> Minimal polynomial basis for the right nullspace of a polynomial matrix
</PRE>
<h3>MD - Optimization</h3>
<h4>Unconstrained Nonlinear Least Squares</h4>
<PRE>
<A href="MD03AD.html">
<B>MD03AD</B></A> Levenberg-Marquardt algorithm (Cholesky-based or conjugate
gradients solver)
<A href="MD03BD.html">
<B>MD03BD</B></A> Enhanced MINPACK-like Levenberg-Marquardt algorithm
</PRE>
<HR>
<A NAME="N"><H2>N - Nonlinear Systems</H2></A>
<h3>NI - Interfaces to Nonlinear Solvers</h3>
<h4>ODE and DAE Solvers</h4>
<PRE>
<A href="DAESolver.html">
<B>DAESolver</B></A> Interface to DAE Solvers
<A href="ODESolver.html">
<B>ODESolver</B></A> Interface to ODE Solvers
</PRE>
<h4>Nonlinear Equation Solvers</h4>
<PRE>
<A href="KINSOL.html">
<B>KINSOL</B></A> Interface to KINSOL solver for nonlinear systems of equations
</PRE>
<h4>Nonlinear Optimization Solvers</h4>
<PRE>
<A href="FSQP.html">
<B>FSQP</B></A> Interface to FSQP solver for nonlinear optimization
</PRE>
<HR>
<A NAME="S"><H2>S - Synthesis Routines</H2></A>
<h3>SB - State-Space Synthesis</h3>
<h4>Eigenvalue/Eigenvector Assignment</h4>
<PRE>
<A href="SB01BD.html">
<B>SB01BD</B></A> Pole assignment for a given matrix pair (A,B)
<A href="SB01DD.html">
<B>SB01DD</B></A> Eigenstructure assignment for a controllable matrix pair (A,B) in
orthogonal canonical form
<A href="SB01MD.html">
<B>SB01MD</B></A> State feedback matrix of a time-invariant single-input system
</PRE>
<h4>Riccati Equations</h4>
<PRE>
<A href="SB02MD.html">
<B>SB02MD</B></A> Solution of algebraic Riccati equations (Schur vectors method)
<A href="SB02MT.html">
<B>SB02MT</B></A> Conversion of problems with coupling terms to standard problems
<A href="SB02MX.html">
<B>SB02MX</B></A> Conversion of problems with coupling terms to standard problems
(more flexibility)
<A href="SB02ND.html">
<B>SB02ND</B></A> Optimal state feedback matrix for an optimal control problem
<A href="SB02OD.html">
<B>SB02OD</B></A> Solution of algebraic Riccati equations (generalized Schur method)
<A href="SB02PD.html">
<B>SB02PD</B></A> Solution of continuous algebraic Riccati equations (matrix sign
function method) with condition and forward error bound estimates
<A href="SB02QD.html">
<B>SB02QD</B></A> Condition and forward error for continuous Riccati equation solution
<A href="SB02RD.html">
<B>SB02RD</B></A> Solution of algebraic Riccati equations (refined Schur vectors method)
with condition and forward error bound estimates
<A href="SB02SD.html">
<B>SB02SD</B></A> Condition and forward error for discrete Riccati equation solution
</PRE>
<h4>Lyapunov Equations</h4>
<PRE>
<A href="SB03MD.html">
<B>SB03MD</B></A> Solution of Lyapunov equations and separation estimation
<A href="SB03OD.html">
<B>SB03OD</B></A> Solution of stable Lyapunov equations (Cholesky factor)
<A href="SB03OZ.html">
<B>SB03OZ</B></A> Solution of stable complex Lyapunov equations (Cholesky factor)
<A href="SB03PD.html">
<B>SB03PD</B></A> Solution of discrete Lyapunov equations and separation estimation
<A href="SB03QD.html">
<B>SB03QD</B></A> Condition and forward error for continuous Lyapunov equations
<A href="SB03RD.html">
<B>SB03RD</B></A> Solution of continuous Lyapunov equations and separation estimation
<A href="SB03SD.html">
<B>SB03SD</B></A> Condition and forward error for discrete Lyapunov equations
<A href="SB03TD.html">
<B>SB03TD</B></A> Solution of continuous Lyapunov equations, condition and forward error
estimation
<A href="SB03UD.html">
<B>SB03UD</B></A> Solution of discrete Lyapunov equations, condition and forward error
estimation
</PRE>
<h4>Sylvester Equations</h4>
<PRE>
<A href="SB04MD.html">
<B>SB04MD</B></A> Solution of continuous Sylvester equations (Hessenberg-Schur method)
<A href="SB04ND.html">
<B>SB04ND</B></A> Solution of continuous Sylvester equations (one matrix in Schur form)
<A href="SB04OD.html">
<B>SB04OD</B></A> Solution of generalized Sylvester equations with separation estimation
<A href="SB04PD.html">
<B>SB04PD</B></A> Solution of continuous or discrete Sylvester equations (Schur method)
<A href="SB04QD.html">
<B>SB04QD</B></A> Solution of discrete Sylvester equations (Hessenberg-Schur method)
<A href="SB04RD.html">
<B>SB04RD</B></A> Solution of discrete Sylvester equations (one matrix in Schur form)
</PRE>
<h4>Deadbeat Control</h4>
<PRE>
<A href="SB06ND.html">
<B>SB06ND</B></A> Minimum norm deadbeat control state feedback matrix
</PRE>
<h4>Transfer Matrix Factorization</h4>
<PRE>
<A href="SB08CD.html">
<B>SB08CD</B></A> Left coprime factorization with inner denominator
<A href="SB08DD.html">
<B>SB08DD</B></A> Right coprime factorization with inner denominator
<A href="SB08ED.html">
<B>SB08ED</B></A> Left coprime factorization with prescribed stability degree
<A href="SB08FD.html">
<B>SB08FD</B></A> Right coprime factorization with prescribed stability degree
<A href="SB08GD.html">
<B>SB08GD</B></A> State-space representation of a left coprime factorization
<A href="SB08HD.html">
<B>SB08HD</B></A> State-space representation of a right coprime factorization
<A href="SB08MD.html">
<B>SB08MD</B></A> Spectral factorization of polynomials (continuous-time case)
<A href="SB08ND.html">
<B>SB08ND</B></A> Spectral factorization of polynomials (discrete-time case)
</PRE>
<h4>Realization Methods</h4>
<PRE>
<A href="SB09MD.html">
<B>SB09MD</B></A> Closeness of two multivariable sequences
</PRE>
<h4>Optimal Regulator Problems</h4>
<PRE>
<A href="SB10AD.html">
<B>SB10AD</B></A> H-infinity optimal controller using modified Glover's and Doyle's
formulas (continuous-time)
<A href="SB10DD.html">
<B>SB10DD</B></A> H-infinity (sub)optimal state controller for a discrete-time system
<A href="SB10ED.html">
<B>SB10ED</B></A> H2 optimal state controller for a discrete-time system
<A href="SB10FD.html">
<B>SB10FD</B></A> H-infinity (sub)optimal state controller for a continuous-time system
<A href="SB10HD.html">
<B>SB10HD</B></A> H2 optimal state controller for a continuous-time system
<A href="SB10MD.html">
<B>SB10MD</B></A> D-step in the D-K iteration for continuous-time case
<A href="SB10ID.html">
<B>SB10ID</B></A> Positive feedback controller for a continuous-time system
<A href="SB10KD.html">
<B>SB10KD</B></A> Positive feedback controller for a discrete-time system
<A href="SB10ZD.html">
<B>SB10ZD</B></A> Positive feedback controller for a discrete-time system (D <> 0)
</PRE>
<h4>Controller Reduction</h4>
<PRE>
<A href="SB16AD.html">
<B>SB16AD</B></A> Stability/performance enforcing frequency-weighted controller reduction
<A href="SB16BD.html">
<B>SB16BD</B></A> Coprime factorization based state feedback controller reduction
<A href="SB16CD.html">
<B>SB16CD</B></A> Coprime factorization based frequency-weighted state feedback
controller reduction
</PRE>
<h3>SG - Generalized State-Space Synthesis</h3>
<h4>Riccati Equations</h4>
<PRE>
<A href="SG02AD.html">
<B>SG02AD</B></A> Solution of algebraic Riccati equations for descriptor systems
<A href="SG02CW.html">
<B>SG02CW</B></A> Residual of continuous- or discrete-time (generalized) algebraic
Riccati equations
<A href="SG02CX.html">
<B>SG02CX</B></A> Line search parameter minimizing the residual of (generalized)
continuous- or discrete-time algebraic Riccati equations
<A href="SG02ND.html">
<B>SG02ND</B></A> Optimal state feedback matrix for an optimal control problem
</PRE>
<h4>Generalized Lyapunov Equations</h4>
<PRE>
<A href="SG03AD.html">
<B>SG03AD</B></A> Solution of generalized Lyapunov equations and separation estimation
<A href="SG03BD.html">
<B>SG03BD</B></A> Solution of stable generalized Lyapunov equations (Cholesky factor)
<A href="SG03BZ.html">
<B>SG03BZ</B></A> Solution of stable generalized complex Lyapunov equations (Cholesky factor)
</PRE>
<HR>
<A NAME="T"><H2>T - Transformation Routines</H2></A>
<h3>TB - State-Space</h3>
<h4>State-Space Transformations</h4>
<PRE>
<A href="TB01ID.html">
<B>TB01ID</B></A> Balancing a system matrix for a given triplet
<A href="TB01IZ.html">
<B>TB01IZ</B></A> Balancing a system matrix for a given triplet (complex case)
<A href="TB01KD.html">
<B>TB01KD</B></A> Additive spectral decomposition of a state-space system
<A href="TB01LD.html">
<B>TB01LD</B></A> Spectral separation of a state-space system
<A href="TB01MD.html">
<B>TB01MD</B></A> Upper/lower controller Hessenberg form
<A href="TB01ND.html">
<B>TB01ND</B></A> Upper/lower observer Hessenberg form
<A href="TB01PD.html">
<B>TB01PD</B></A> Minimal, controllable or observable block Hessenberg realization
<A href="TB01PX.html">
<B>TB01PX</B></A> Minimal, controllable or observable block Hessenberg realization (variant)
<A href="TB01TD.html">
<B>TB01TD</B></A> Balancing state-space representation by permutations and scalings
<A href="TB01UD.html">
<B>TB01UD</B></A> Controllable block Hessenberg realization for a state-space representation
<A href="TB01UY.html">
<B>TB01UY</B></A> Controllable block Hessenberg realization for a standard multi-input system
<A href="TB01WD.html">
<B>TB01WD</B></A> Reduction of the state dynamics matrix to real Schur form
<A href="TB01WX.html">
<B>TB01WX</B></A> Orthogonal similarity transformation of a standard system to one
with state matrix in a Hessenberg form
<A href="TB01ZD.html">
<B>TB01ZD</B></A> Controllable realization for single-input systems
</PRE>
<h4>State-Space to Polynomial Matrix Conversion</h4>
<PRE>
<A href="TB03AD.html">
<B>TB03AD</B></A> Left/right polynomial matrix representation of a state-space representation
</PRE>
<h4>State-Space to Rational Matrix Conversion</h4>
<PRE>
<A href="TB04AD.html">
<B>TB04AD</B></A> Transfer matrix of a state-space representation
<A href="TB04BD.html">
<B>TB04BD</B></A> Transfer matrix of a state-space representation, using the pole-zeros method
<A href="TB04CD.html">
<B>TB04CD</B></A> Transfer matrix of a state-space representation in the pole-zero-gain form
</PRE>
<h4>State-Space to Frequency Response</h4>
<PRE>
<A href="TB05AD.html">
<B>TB05AD</B></A> Frequency response matrix of a state-space representation
</PRE>
<h3>TC - Polynomial Matrix</h3>
<h4>Polynomial Matrix Transformations</h4>
<PRE>
<A href="TC01OD.html">
<B>TC01OD</B></A> Dual of a left/right polynomial matrix representation
</PRE>
<h4>Polynomial Matrix to State-Space Conversion</h4>
<PRE>
<A href="TC04AD.html">
<B>TC04AD</B></A> State-space representation for left/right polynomial matrix representation
</PRE>
<h4>Polynomial Matrix to Frequency Response</h4>
<PRE>
<A href="TC05AD.html">
<B>TC05AD</B></A> Transfer matrix of a left/right polynomial matrix representation
</PRE>
<h3>TD - Rational Matrix</h3>
<h4>Rational Matrix to Polynomial Matrix Conversion</h4>
<PRE>
<A href="TD03AD.html">
<B>TD03AD</B></A> Left/right polynomial matrix representation for a proper transfer matrix
</PRE>
<h4>Rational Matrix to State-Space Conversion</h4>
<PRE>
<A href="TD04AD.html">
<B>TD04AD</B></A> Minimal state-space representation for a proper transfer matrix
</PRE>
<h4>Rational Matrix to Frequency Response</h4>
<PRE>
<A href="TD05AD.html">
<B>TD05AD</B></A> Evaluation of a transfer function for a specified frequency
</PRE>
<h3>TF - Time Response</h3>
<PRE>
<A href="TF01MD.html">
<B>TF01MD</B></A> Output response of a linear discrete-time system
<A href="TF01ND.html">
<B>TF01ND</B></A> Output response of a linear discrete-time system (Hessenberg matrix)
<A href="TF01OD.html">
<B>TF01OD</B></A> Block Hankel expansion of a multivariable parameter sequence
<A href="TF01PD.html">
<B>TF01PD</B></A> Block Toeplitz expansion of a multivariable parameter sequence
<A href="TF01QD.html">
<B>TF01QD</B></A> Markov parameters of a system from transfer function matrix
<A href="TF01RD.html">
<B>TF01RD</B></A> Markov parameters of a system from state-space representation
</PRE>
<h3>TG - Generalized State-space</h3>
<h4>Generalized State-space Transformations</h4>
<PRE>
<A href="TG01AD.html">
<B>TG01AD</B></A> Balancing the matrices of the system pencil corresponding to a
descriptor triple
<A href="TG01AZ.html">
<B>TG01AZ</B></A> Balancing the matrices of the system pencil corresponding to a
descriptor triple (complex case)
<A href="TG01BD.html">
<B>TG01BD</B></A> Orthogonal reduction of a descriptor system to the generalized
Hessenberg form
<A href="TG01CD.html">
<B>TG01CD</B></A> Orthogonal reduction of a descriptor system pair (A-sE,B)
to the QR-coordinate form
<A href="TG01DD.html">
<B>TG01DD</B></A> Orthogonal reduction of a descriptor system pair (C,A-sE)
to the RQ-coordinate form
<A href="TG01ED.html">
<B>TG01ED</B></A> Orthogonal reduction of a descriptor system to a SVD coordinate
form
<A href="TG01FD.html">
<B>TG01FD</B></A> Orthogonal reduction of a descriptor system to a SVD-like
coordinate form
<A href="TG01FZ.html">
<B>TG01FZ</B></A> Orthogonal reduction of a descriptor system to a SVD-like
coordinate form (complex case)
<A href="TG01GD.html">
<B>TG01GD</B></A> Reduced descriptor representation without non-dynamic modes
<A href="TG01HD.html">
<B>TG01HD</B></A> Orthogonal reduction of a descriptor system to the controllability
staircase form
<A href="TG01ID.html">
<B>TG01ID</B></A> Orthogonal reduction of a descriptor system to the observability
staircase form
<A href="TG01JD.html">
<B>TG01JD</B></A> Irreducible descriptor representation
<A href="TG01JY.html">
<B>TG01JY</B></A> Irreducible descriptor representation (blocked version)
<A href="TG01LD.html">
<B>TG01LD</B></A> Finite-infinite decomposition of a descriptor system
<A href="TG01MD.html">
<B>TG01MD</B></A> Finite-infinite generalized real Schur form decomposition of a descriptor system
<A href="TG01ND.html">
<B>TG01ND</B></A> Finite-infinite block-diagonal decomposition of a descriptor system
<A href="TG01OD.html">
<B>TG01OD</B></A> Reducing a SISO descriptor system with E nonsingular so that
the obtained feedthrough term has a sufficiently large magnitude
<A href="TG01OZ.html">
<B>TG01OZ</B></A> Reducing a complex SISO descriptor system with E nonsingular so that
the obtained feedthrough term has a sufficiently large magnitude
<A href="TG01PD.html">
<B>TG01PD</B></A> Bi-domain spectral splitting of a subpencil of a descriptor system
<A href="TG01QD.html">
<B>TG01QD</B></A> Three-domain spectral splitting of a subpencil of a descriptor system
<A href="TG01WD.html">
<B>TG01WD</B></A> Reduction of the descriptor dynamics matrix pair to generalized
real Schur form
</PRE>
<HR>
<A NAME="U"><H2>U - Utility Routines</H2></A>
<h3>UD - Numerical Data Handling</h3>
<PRE>
<A href="UD01BD.html">
<B>UD01BD</B></A> Reading a matrix polynomial
<A href="UD01CD.html">
<B>UD01CD</B></A> Reading a sparse matrix polynomial
<A href="UD01DD.html">
<B>UD01DD</B></A> Reading a sparse real matrix
<A href="UD01MD.html">
<B>UD01MD</B></A> Printing a real matrix
<A href="UD01MZ.html">
<B>UD01MZ</B></A> Printing a real matrix (complex case)
<A href="UD01ND.html">
<B>UD01ND</B></A> Printing a matrix polynomial
<A href="UE01MD.html">
<B>UE01MD</B></A> Default machine-specific parameters for (skew-)Hamiltonian computation routines
</PRE>
<HR>
</BODY>
</HTML>
|