1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
|
<HTML>
<HEAD><title>On-Line SLICOT Supporting Routines Overview</title></HEAD>
<BODY>
<H1>SLICOT SUPPORTING ROUTINES INDEX</H1>
<HR>
To go to the beginning of a chapter click on the appropriate letter below: <p>
<center>
<A href="#A"><B>A</B></A> ;
<A href="#B"><B>B</B></A> ;
<A href="#C"><B>C</B></A> ;
<A href="#D"><B>D</B></A> ;
<A href="#F"><B>F</B></A> ;
<A href="#I"><B>I</B></A> ;
<A href="#M"><B>M</B></A> ;
<A href="#N"><B>N</B></A> ;
<A href="#S"><B>S</B></A> ;
<A href="#T"><B>T</B></A> ;
<A href="#U"><B>U</B></A> ;
</center>
<BR>
or <A href="http://www.slicot.org/index.php?site=home">
<b>Return to SLICOT homepage</b></A>
<BR>
or <A href="..\libindex.html">
<b>Go to SLICOT LIBRARY INDEX</b></A>
<p>
<HR>
<A NAME="A"><H2>A - Analysis Routines</H2></A>
<h3>AB - State-Space Analysis</h3>
<h4>Poles, Zeros, Gain</h4>
<PRE>
<A href="AB08NX.html">
<B>AB08NX</B></A> Construction of a reduced system with input/output matrix Dr of full
row rank, preserving transmission zeros
<A href="AB08NY.html">
<B>AB08NY</B></A> Construction of a reduced system with input/output matrix Dr of full
row rank, preserving transmission zeros (extended variant)
<A href="AB8NXZ.html">
<B>AB8NXZ</B></A> Construction of a reduced system with input/output matrix Dr of full
row rank, preserving transmission zeros (complex case)
</PRE>
<h4>Model Reduction</h4>
<PRE>
<A href="AB09AX.html">
<B>AB09AX</B></A> Balance & Truncate model reduction with state matrix in real Schur form
<A href="AB09BX.html">
<B>AB09BX</B></A> Singular perturbation approximation based model reduction with state
matrix in real Schur form
<A href="AB09CX.html">
<B>AB09CX</B></A> Hankel norm approximation based model reduction with state matrix
in real Schur form
<A href="AB09HX.html">
<B>AB09HX</B></A> Stochastic balancing model reduction of stable systems
<A href="AB09HY.html">
<B>AB09HY</B></A> Cholesky factors of the controllability and observability Grammians
<A href="AB09IX.html">
<B>AB09IX</B></A> Accuracy enhanced balancing related model reduction
<A href="AB09IY.html">
<B>AB09IY</B></A> Cholesky factors of the frequency-weighted controllability and
observability Grammians
<A href="AB09JV.html">
<B>AB09JV</B></A> State-space representation of a projection of a left weighted
transfer-function matrix
<A href="AB09JW.html">
<B>AB09JW</B></A> State-space representation of a projection of a right weighted
transfer-function matrix
<A href="AB09JX.html">
<B>AB09JX</B></A> Check stability/antistability of finite eigenvalues
<A href="AB09KX.html">
<B>AB09KX</B></A> Stable projection of V*G*W or conj(V)*G*conj(W)
</PRE>
<h4>System Norms</h4>
<PRE>
<A href="AB13AX.html">
<B>AB13AX</B></A> Hankel-norm of a stable system with state matrix in real Schur form
<A href="AB13DX.html">
<B>AB13DX</B></A> Maximum singular value of a transfer-function matrix
</PRE>
<h3>AG - Generalized State-Space Analysis</h3>
<h4>Poles, Zeros, Gain</h4>
<PRE>
<A href="AG08BY.html">
<B>AG08BY</B></A> Construction of a reduced system with input/output matrix Dr of full
row rank, preserving the finite Smith zeros
<A href="AG8BYZ.html">
<B>AG8BYZ</B></A> Construction of a reduced system with input/output matrix Dr of full
row rank, preserving the finite Smith zeros (complex case)
</PRE>
<HR>
<A NAME="B"><H2>B - Benchmark and Test Problems</H2></A>
<HR>
<A NAME="C"><H2>C - Adaptive Control</H2></A>
<HR>
<A NAME="D"><H2>D - Data Analysis</H2></A>
<h3>DE - Covariances</h3>
<h3>DF - Spectra</h3>
<h3>DG - Discrete Fourier Transforms</h3>
<h3>DK - Windowing</h3>
<HR>
<A NAME="F"><H2>F - Filtering</H2></A>
<h3>FB - Kalman Filters</h3>
<HR>
<A NAME="I"><H2>I - Identification</H2></A>
<h3>IB - Subspace Identification</h3>
<h4>Time Invariant State-space Systems</h4>
<PRE>
<A href="IB01MD.html">
<B>IB01MD</B></A> Upper triangular factor in QR factorization of a
block-Hankel-block matrix
<A href="IB01MY.html">
<B>IB01MY</B></A> Upper triangular factor in fast QR factorization of a
block-Hankel-block matrix
<A href="IB01ND.html">
<B>IB01ND</B></A> Singular value decomposition giving the system order
<A href="IB01OD.html">
<B>IB01OD</B></A> Estimating the system order
<A href="IB01OY.html">
<B>IB01OY</B></A> User's confirmation of the system order
<A href="IB01PD.html">
<B>IB01PD</B></A> Estimating the system matrices and covariances
<A href="IB01PX.html">
<B>IB01PX</B></A> Estimating the matrices B and D of a system using Kronecker products
<A href="IB01PY.html">
<B>IB01PY</B></A> Estimating the matrices B and D of a system exploiting the structure
<A href="IB01QD.html">
<B>IB01QD</B></A> Estimating the initial state and the matrices B and D of a system
<A href="IB01RD.html">
<B>IB01RD</B></A> Estimating the initial state of a system
</PRE>
<HR>
<A NAME="M"><H2>M - Mathematical Routines</H2></A>
<h3>MA - Auxiliary Routines</h3>
<h4>Mathematical Scalar Routines</h4>
<PRE>
<A href="MA01AD.html">
<B>MA01AD</B></A> Complex square root of a complex number in real arithmetic
<A href="MA01BD.html">
<B>MA01BD</B></A> Safely computing the general product of K real scalars
<A href="MA01BZ.html">
<B>MA01BZ</B></A> Safely computing the general product of K complex scalars
<A href="MA01CD.html">
<B>MA01CD</B></A> Safely computing the sign of a sum of two real numbers represented
using integer powers of a base
<A href="MA01DD.html">
<B>MA01DD</B></A> Approximate symmetric chordal metric for two finite complex numbers
<A href="MA01DZ.html">
<B>MA01DZ</B></A> Approximate symmetric chordal metric for two, possibly infinite, complex numbers
</PRE>
<h4>Mathematical Vector/Matrix Routines</h4>
<PRE>
<A href="MA02AD.html">
<B>MA02AD</B></A> Transpose of a matrix
<A href="MA02AZ.html">
<B>MA02AZ</B></A> (Conjugate) transpose of a complex matrix
<A href="MA02BD.html">
<B>MA02BD</B></A> Reversing the order of rows and/or columns of a matrix
<A href="MA02BZ.html">
<B>MA02BZ</B></A> Reversing the order of rows and/or columns of a matrix (complex case)
<A href="MA02CD.html">
<B>MA02CD</B></A> Pertranspose of the central band of a square matrix
<A href="MA02CZ.html">
<B>MA02CZ</B></A> Pertranspose of the central band of a square matrix (complex case)
<A href="MA02DD.html">
<B>MA02DD</B></A> Pack/unpack the upper or lower triangle of a symmetric matrix
<A href="MA02ED.html">
<B>MA02ED</B></A> Construct a triangle of a symmetric matrix, given the other triangle
<A href="MA02ES.html">
<B>MA02ES</B></A> Construct a triangle of a skew-symmetric real matrix, given the
other triangle
<A href="MA02EZ.html">
<B>MA02EZ</B></A> Construct a triangle of a (skew-)symmetric/Hermitian complex matrix,
given the other triangle
<A href="MA02FD.html">
<B>MA02FD</B></A> Hyperbolic plane rotation
<A href="MA02GD.html">
<B>MA02GD</B></A> Column interchanges on a real matrix
<A href="MA02GZ.html">
<B>MA02GZ</B></A> Column interchanges on a complex matrix
<A href="MA02HD.html">
<B>MA02HD</B></A> Check if a matrix is a scalar multiple of an identity-like matrix
<A href="MA02HZ.html">
<B>MA02HZ</B></A> Check if a complex matrix is a scalar multiple of an identity-like matrix
<A href="MA02ID.html">
<B>MA02ID</B></A> Matrix 1-, Frobenius, or infinity norms of a skew-Hamiltonian matrix
<A href="MA02IZ.html">
<B>MA02IZ</B></A> Matrix 1-, Frobenius, or infinity norms of a complex skew-Hamiltonian matrix
<A href="MA02JD.html">
<B>MA02JD</B></A> Test if a matrix is an orthogonal symplectic matrix
<A href="MA02JZ.html">
<B>MA02JZ</B></A> Test if a matrix is a unitary symplectic matrix
<A href="MA02MD.html">
<B>MA02MD</B></A> Norms of a real skew-symmetric matrix
<A href="MA02MZ.html">
<B>MA02MZ</B></A> Norms of a complex skew-symmetric matrix
<A href="MA02NZ.html">
<B>MA02NZ</B></A> Two rows and columns permutation of a (skew-)symmetric/Hermitian
complex matrix
<A href="MA02OD.html">
<B>MA02OD</B></A> Number of zero rows of a real (skew-)Hamiltonian matrix
<A href="MA02OZ.html">
<B>MA02OZ</B></A> Number of zero rows of a complex (skew-)Hamiltonian matrix
<A href="MA02PD.html">
<B>MA02PD</B></A> Number of zero rows and columns of a real matrix
<A href="MA02PZ.html">
<B>MA02PZ</B></A> Number of zero rows and columns of a complex matrix
<A href="MA02RD.html">
<B>MA02RD</B></A> Sorting a real vector and rearranging another vector
<A href="MA02SD.html">
<B>MA02SD</B></A> Smallest nonzero absolute value of the elements of a real matrix
<A href="MB01KD.html">
<B>MB01KD</B></A> Rank 2k operation alpha*A*trans(B) - alpha*B*trans(A) + beta*C,
with A and C skew-symmetric matrices
<A href="MB01LD.html">
<B>MB01LD</B></A> Computation of matrix expression alpha*R + beta*A*X*trans(A) with
skew-symmetric matrices R and X
<A href="MB01MD.html">
<B>MB01MD</B></A> Matrix-vector operation alpha*A*x + beta*y, with A a skew-symmetric matrix
<A href="MB01ND.html">
<B>MB01ND</B></A> Rank 2 operation alpha*x*trans(y) - alpha*y*trans(x) + A, with A a
skew-symmetric matrix
<A href="MB01SD.html">
<B>MB01SD</B></A> Rows and/or columns scaling of a matrix
<A href="MB01SS.html">
<B>MB01SS</B></A> Symmetric scaling of a symmetric matrix
</PRE>
<h3>MB - Linear Algebra</h3>
<h4>Basic Linear Algebra Manipulations</h4>
<PRE>
<A href="MB01OC.html">
<B>MB01OC</B></A> Computation of matrix expression alpha R + beta ( op(H) X + X op(H)' )
with R, X symmetric and H upper Hessenberg
<A href="MB01OD.html">
<B>MB01OD</B></A> Computation of matrix expression alpha R + beta ( op(H) X op(E)' + op(E) X op(H)' )
with R, X symmetric, H upper Hessenberg, and E upper triangular
<A href="MB01OE.html">
<B>MB01OE</B></A> Computation of matrix expression alpha R + beta ( op(H) op(E)' + op(E) op(H)' )
with R symmetric, H upper Hessenberg, and E upper triangular
<A href="MB01OH.html">
<B>MB01OH</B></A> Computation of matrix expression alpha R + beta ( op(H) op(A)' + op(A) op(H)' )
with R symmetric, and A, H upper Hessenberg
<A href="MB01OO.html">
<B>MB01OO</B></A> Computation of P or P' with P = op(H) X op(E)' with X symmetric,
H upper Hessenberg, and E upper triangular
<A href="MB01OS.html">
<B>MB01OS</B></A> Computation of matrix expression P = H X or P = X H, with X symmetric and
H upper Hessenberg
<A href="MB01OT.html">
<B>MB01OT</B></A> Computation of matrix expression alpha R + beta ( op(E) op(T)' + op(T) op(E)' )
with R symmetric and E, T upper triangular
<A href="MB01RH.html">
<B>MB01RH</B></A> Computation of matrix expression alpha R + beta op(H) X op(H)'
with R, X symmetric and H upper Hessenberg
<A href="MB01RT.html">
<B>MB01RT</B></A> Computation of matrix expression alpha R + beta op(E) X op(E)'
with R, X symmetric and E upper triangular
<A href="MB01RU.html">
<B>MB01RU</B></A> Computation of matrix expression alpha*R + beta*A*X*trans(A)
(MB01RD variant)
<A href="MB01RW.html">
<B>MB01RW</B></A> Computation of matrix expression alpha*A*X*trans(A), X symmetric (BLAS 2)
<A href="MB01RX.html">
<B>MB01RX</B></A> Computing a triangle of the matrix expressions alpha*R + beta*A*B
or alpha*R + beta*B*A
<A href="MB01RY.html">
<B>MB01RY</B></A> Computing a triangle of the matrix expressions alpha*R + beta*H*B
or alpha*R + beta*B*H, with H an upper Hessenberg matrix
<A href="MB01UW.html">
<B>MB01UW</B></A> Computation of matrix expressions alpha*H*A or alpha*A*H,
overwritting A, with H an upper Hessenberg matrix
<A href="MB01VD.html">
<B>MB01VD</B></A> Kronecker product of two matrices
<A href="MB01XY.html">
<B>MB01XY</B></A> Computation of the product U'*U or L*L', with U and L upper and
lower triangular matrices (unblock algorithm)
<A href="SB03OV.html">
<B>SB03OV</B></A> Construction of a complex plane rotation to annihilate a real number,
modifying a complex number
<A href="SG03BY.html">
<B>SG03BY</B></A> Computing a complex plane rotation in real arithmetic
<A href="SG03BR.html">
<B>SG03BR</B></A> Computing a complex plane rotation in real arithmetic (SG03BY version
- adaptation of LAPACK ZLARTG)
</PRE>
<h4>Linear Equations and Least Squares</h4>
<PRE>
<A href="MB02CU.html">
<B>MB02CU</B></A> Bringing the first blocks of a generator in proper form
(extended version of MB02CX)
<A href="MB02CV.html">
<B>MB02CV</B></A> Applying the MB02CU transformations on other columns / rows of
the generator
<A href="MB02CX.html">
<B>MB02CX</B></A> Bringing the first blocks of a generator in proper form
<A href="MB02CY.html">
<B>MB02CY</B></A> Applying the MB02CX transformations on other columns / rows of
the generator
<A href="MB02NY.html">
<B>MB02NY</B></A> Separation of a zero singular value of a bidiagonal submatrix
<A href="MB02QY.html">
<B>MB02QY</B></A> Minimum-norm least squares solution, given a rank-revealing
QR factorization
<A href="MB02UU.html">
<B>MB02UU</B></A> Solution of linear equations using LU factorization with complete pivoting
<A href="MB02UV.html">
<B>MB02UV</B></A> LU factorization with complete pivoting
<A href="MB02UW.html">
<B>MB02UW</B></A> Solution of linear equations of order at most 2 with possible scaling
and perturbation of system matrix
<A href="MB02WD.html">
<B>MB02WD</B></A> Solution of a positive definite linear system A*x = b, or f(A, x) = b,
using conjugate gradient algorithm
<A href="MB02XD.html">
<B>MB02XD</B></A> Solution of a set of positive definite linear systems, A'*A*X = B, or
f(A)*X = B, using Gaussian elimination
<A href="MB02YD.html">
<B>MB02YD</B></A> Solution of the linear system A*x = b, D*x = 0, D diagonal
</PRE>
<h4>Eigenvalues and Eigenvectors</h4>
<PRE>
<A href="MB03AD.html">
<B>MB03AD</B></A> Reducing the first column of a real Wilkinson shift polynomial for a
product of matrices to the first unit vector
<A href="MB03AB.html">
<B>MB03AB</B></A> Reducing the first column of a real Wilkinson shift polynomial for a
product of matrices to the first unit vector (variant with explicit shifts)
<A href="MB03AE.html">
<B>MB03AE</B></A> Reducing the first column of a real Wilkinson shift polynomial for a
product of matrices to the first unit vector (variant with partial evaluation,
Hessenberg factor is the first one)
<A href="MB03AF.html">
<B>MB03AF</B></A> Reducing the first column of a real Wilkinson shift polynomial for a
product of matrices to the first unit vector (variant, Hessenberg factor is the
last one)
<A href="MB03AG.html">
<B>MB03AG</B></A> Reducing the first column of a real Wilkinson shift polynomial for a
product of matrices to the first unit vector (variant with evaluation,
Hessenberg factor is the first one)
<A href="MB03AH.html">
<B>MB03AH</B></A> Reducing the first column of a real Wilkinson shift polynomial for a
product of matrices to the first unit vector (variant with partial evaluation,
Hessenberg factor is the last one)
<A href="MB03AI.html">
<B>MB03AI</B></A> Reducing the first column of a real Wilkinson shift polynomial for a
product of matrices to the first unit vector (variant with evaluation,
Hessenberg factor is the last one)
<A href="MB03BA.html">
<B>MB03BA</B></A> Computing maps for Hessenberg index and signature array
<A href="MB03BB.html">
<B>MB03BB</B></A> Eigenvalues of a 2-by-2 matrix product via a complex single shifted
periodic QZ algorithm
<A href="MB03BC.html">
<B>MB03BC</B></A> Product singular value decomposition of K-1 triangular factors of
order 2
<A href="MB03BD.html">
<B>MB03BD</B></A> Finding eigenvalues of a generalized matrix product in
Hessenberg-triangular form
<A href="MB03BE.html">
<B>MB03BE</B></A> Applying iterations of a real single shifted periodic QZ algorithm
to a 2-by-2 matrix product
<A href="MB03BF.html">
<B>MB03BF</B></A> Applying iterations of a real single shifted periodic QZ algorithm
to a 2-by-2 matrix product, with Hessenberg factor the last one
<A href="MB03BZ.html">
<B>MB03BZ</B></A> Finding eigenvalues of a complex generalized matrix product in
Hessenberg-triangular form
<A href="MB03CD.html">
<B>MB03CD</B></A> Exchanging eigenvalues of a real 2-by-2, 3-by-3 or 4-by-4 block upper
triangular pencil (factored version)
<A href="MB03CZ.html">
<B>MB03CZ</B></A> Exchanging eigenvalues of a complex 2-by-2 upper triangular pencil
(factored version)
<A href="MB03DD.html">
<B>MB03DD</B></A> Exchanging eigenvalues of a real 2-by-2, 3-by-3 or 4-by-4 block upper
triangular pencil
<A href="MB03DZ.html">
<B>MB03DZ</B></A> Exchanging eigenvalues of a complex 2-by-2 upper triangular pencil
<A href="MB03ED.html">
<B>MB03ED</B></A> Reducing a real 2-by-2 or 4-by-4 block (anti-)diagonal
skew-Hamiltonian/Hamiltonian pencil to generalized Schur form and moving
eigenvalues with negative real parts to the top (factored version)
<A href="MB03FD.html">
<B>MB03FD</B></A> Reducing a real 2-by-2 or 4-by-4 block (anti-)diagonal
skew-Hamiltonian/Hamiltonian pencil to generalized Schur form and moving
eigenvalues with negative real parts to the top
<A href="MB03GD.html">
<B>MB03GD</B></A> Exchanging eigenvalues of a real 2-by-2 or 4-by-4 block upper
triangular skew-Hamiltonian/Hamiltonian pencil (factored version)
<A href="MB03GZ.html">
<B>MB03GZ</B></A> Exchanging eigenvalues of a complex 2-by-2 skew-Hamiltonian/
Hamiltonian pencil in structured Schur form (factored version)
<A href="MB03HD.html">
<B>MB03HD</B></A> Exchanging eigenvalues of a real 2-by-2 or 4-by-4 skew-Hamiltonian/
Hamiltonian pencil in structured Schur form
<A href="MB03HZ.html">
<B>MB03HZ</B></A> Exchanging eigenvalues of a complex 2-by-2 skew-Hamiltonian/
Hamiltonian pencil in structured Schur form
<A href="MB03ID.html">
<B>MB03ID</B></A> Moving eigenvalues with negative real parts of a real
skew-Hamiltonian/Hamiltonian pencil in structured Schur form to the
leading subpencil (factored version)
<A href="MB03IZ.html">
<B>MB03IZ</B></A> Moving eigenvalues with negative real parts of a complex
skew-Hamiltonian/Hamiltonian pencil in structured Schur form to the
leading subpencil (factored version)
<A href="MB03JD.html">
<B>MB03JD</B></A> Moving eigenvalues with negative real parts of a real
skew-Hamiltonian/Hamiltonian pencil in structured Schur form to the
leading subpencil
<A href="MB03JP.html">
<B>MB03JP</B></A> Moving eigenvalues with negative real parts of a real
skew-Hamiltonian/Hamiltonian pencil in structured Schur form to the
leading subpencil (applying transformations on panels of columns)
<A href="MB03JZ.html">
<B>MB03JZ</B></A> Moving eigenvalues with negative real parts of a complex
skew-Hamiltonian/Hamiltonian pencil in structured Schur form to the
leading subpencil
<A href="MB3JZP.html">
<B>MB3JZP</B></A> Moving eigenvalues with negative real parts of a complex
skew-Hamiltonian/Hamiltonian pencil in structured Schur form to the
leading subpencil (applying transformations on panels of columns)
<A href="MB03KA.html">
<B>MB03KA</B></A> Moving diagonal blocks at a specified position in a formal matrix
product to another position
<A href="MB03KB.html">
<B>MB03KB</B></A> Swapping pairs of adjacent diagonal blocks of sizes 1 and/or 2 in
a formal matrix product
<A href="MB03KC.html">
<B>MB03KC</B></A> Reducing a 2-by-2 formal matrix product to periodic
Hessenberg-triangular form
<A href="MB03KD.html">
<B>MB03KD</B></A> Reordering the diagonal blocks of a formal matrix product using
periodic QZ algorithm
<A href="MB03KE.html">
<B>MB03KE</B></A> Solving periodic Sylvester-like equations with matrices of order
at most 2
<A href="MB03NY.html">
<B>MB03NY</B></A> The smallest singular value of A - jwI
<A href="MB03OY.html">
<B>MB03OY</B></A> Matrix rank determination by incremental condition estimation, during
the pivoted QR factorization process
<A href="MB3OYZ.html">
<B>MB3OYZ</B></A> Matrix rank determination by incremental condition estimation, during
the pivoted QR factorization process (complex case)
<A href="MB03PY.html">
<B>MB03PY</B></A> Matrix rank determination by incremental condition estimation, during
the pivoted RQ factorization process (row pivoting)
<A href="MB3PYZ.html">
<B>MB3PYZ</B></A> Matrix rank determination by incremental condition estimation, during
the pivoted RQ factorization process (row pivoting, complex case)
<A href="MB03QV.html">
<B>MB03QV</B></A> Eigenvalues of an upper quasi-triangular matrix pencil
<A href="MB03QW.html">
<B>MB03QW</B></A> Standardization and eigenvalues of a 2-by-2 diagonal block pair of
an upper quasi-triangular matrix pencil
<A href="MB03QX.html">
<B>MB03QX</B></A> Eigenvalues of an upper quasi-triangular matrix
<A href="MB03QY.html">
<B>MB03QY</B></A> Transformation to Schur canonical form of a selected 2-by-2 diagonal
block of an upper quasi-triangular matrix
<A href="MB03RX.html">
<B>MB03RX</B></A> Reordering the diagonal blocks of a principal submatrix of a real Schur
form matrix
<A href="MB03RY.html">
<B>MB03RY</B></A> Tentative solution of Sylvester equation -AX + XB = C (A, B in real
Schur form)
<A href="MB03RW.html">
<B>MB03RW</B></A> Tentative solution of Sylvester equation -AX + XB = C (A, B in complex
Schur form)
<A href="MB03TS.html">
<B>MB03TS</B></A> Swapping two diagonal blocks of a matrix in (skew-)Hamiltonian
canonical Schur form
<A href="MB03VY.html">
<B>MB03VY</B></A> Generating orthogonal matrices for reduction to periodic
Hessenberg form of a product of matrices
<A href="MB03WA.html">
<B>MB03WA</B></A> Swapping two adjacent diagonal blocks in a periodic real Schur canonical form
<A href="MB03WX.html">
<B>MB03WX</B></A> Eigenvalues of a product of matrices, T = T_1*T_2*...*T_p,
with T_1 upper quasi-triangular and T_2, ..., T_p upper triangular
<A href="MB03XS.html">
<B>MB03XS</B></A> Eigenvalues and real skew-Hamiltonian Schur form of a skew-Hamiltonian matrix
<A href="MB03XU.html">
<B>MB03XU</B></A> Panel reduction of columns and rows of a real (k+2n)-by-(k+2n) matrix by
orthogonal symplectic transformations
<A href="MB03YA.html">
<B>MB03YA</B></A> Annihilation of one or two entries on the subdiagonal of a Hessenberg matrix
corresponding to zero elements on the diagonal of a triangular matrix
<A href="MB03YT.html">
<B>MB03YT</B></A> Periodic Schur factorization of a real 2-by-2 matrix pair (A,B)
with B upper triangular
<A href="MB03ZA.html">
<B>MB03ZA</B></A> Reordering a selected cluster of eigenvalues of a given matrix pair in
periodic Schur form
<A href="MB05MY.html">
<B>MB05MY</B></A> Computing an orthogonal matrix reducing a matrix to real Schur form T,
the eigenvalues, and the upper triangular matrix of right eigenvectors
of T
<A href="MB05OY.html">
<B>MB05OY</B></A> Restoring a matrix after balancing transformations
</PRE>
<h4>Decompositions and Transformations</h4>
<PRE>
<A href="MB04CD.html">
<B>MB04CD</B></A> Reducing a special real block (anti-)diagonal skew-Hamiltonian/
Hamiltonian pencil in factored form to generalized Schur form
<A href="MB04DB.html">
<B>MB04DB</B></A> Applying the inverse of a balancing transformation for a real
skew-Hamiltonian/Hamiltonian matrix pencil
<A href="MB4DBZ.html">
<B>MB4DBZ</B></A> Applying the inverse of a balancing transformation for a complex
skew-Hamiltonian/Hamiltonian matrix pencil
<A href="MB04DD.html">
<B>MB04DD</B></A> Balancing a real Hamiltonian matrix
<A href="MB04DZ.html">
<B>MB04DZ</B></A> Balancing a complex Hamiltonian matrix
<A href="MB04DI.html">
<B>MB04DI</B></A> Applying the inverse of a balancing transformation for a real Hamiltonian matrix
<A href="MB04DS.html">
<B>MB04DS</B></A> Balancing a real skew-Hamiltonian matrix
<A href="MB04DY.html">
<B>MB04DY</B></A> Symplectic scaling of a Hamiltonian matrix
<A href="MB04HD.html">
<B>MB04HD</B></A> Reducing a special real block (anti-)diagonal skew-Hamiltonian/
Hamiltonian pencil to generalized Schur form
<A href="MB04IY.html">
<B>MB04IY</B></A> Applying the product of elementary reflectors used for QR factorization
of a matrix having a lower left zero triangle
<A href="MB04NY.html">
<B>MB04NY</B></A> Applying an elementary reflector to a matrix C = ( A B ), from the right,
where A has one column
<A href="MB04OY.html">
<B>MB04OY</B></A> Applying an elementary reflector to a matrix C = ( A' B' )', from the
left, where A has one row
<A href="MB04OW.html">
<B>MB04OW</B></A> Rank-one update of a Cholesky factorization for a 2-by-2 block matrix
<A href="MB04OX.html">
<B>MB04OX</B></A> Rank-one update of a Cholesky factorization
<A href="MB04PA.html">
<B>MB04PA</B></A> Special reduction of a (skew-)Hamiltonian like matrix
<A href="MB04PU.html">
<B>MB04PU</B></A> Computation of the Paige/Van Loan (PVL) form of a Hamiltonian matrix
(unblocked algorithm)
<A href="MB04PY.html">
<B>MB04PY</B></A> Applying an elementary reflector to a matrix from the left or right
<A href="MB04QB.html">
<B>MB04QB</B></A> Applying a product of symplectic reflectors and Givens rotations to two
general real matrices
<A href="MB04QC.html">
<B>MB04QC</B></A> Premultiplying a real matrix with an orthogonal symplectic block reflector
<A href="MB04QF.html">
<B>MB04QF</B></A> Forming the triangular block factors of a symplectic block reflector
<A href="MB04QS.html">
<B>MB04QS</B></A> Multiplication with a product of symplectic reflectors and Givens rotations
<A href="MB04QU.html">
<B>MB04QU</B></A> Applying a product of symplectic reflectors and Givens rotations to two
general real matrices (unblocked algorithm)
<A href="MB04RB.html">
<B>MB04RB</B></A> Reduction of a skew-Hamiltonian matrix to Paige/Van Loan (PVL) form
(blocked version)
<A href="MB04RU.html">
<B>MB04RU</B></A> Reduction of a skew-Hamiltonian matrix to Paige/Van Loan (PVL) form
(unblocked version)
<A href="MB04RS.html">
<B>MB04RS</B></A> Solution of a generalized real Sylvester equation with matrix pairs in
generalized real Schur form
<A href="MB04RV.html">
<B>MB04RV</B></A> Solution of a generalized complex Sylvester equation with matrix pairs in
generalized complex Schur form
<A href="MB04SU.html">
<B>MB04SU</B></A> Symplectic QR decomposition of a real 2M-by-N matrix
<A href="MB04TS.html">
<B>MB04TS</B></A> Symplectic URV decomposition of a real 2N-by-2N matrix (unblocked version)
<A href="MB04TU.html">
<B>MB04TU</B></A> Applying a row-permuted Givens transformation to two row vectors
<A href="MB04WD.html">
<B>MB04WD</B></A> Generating an orthogonal basis spanning an isotropic subspace
<A href="MB04WP.html">
<B>MB04WP</B></A> Generating an orthogonal symplectic matrix which performed the reduction
in MB04PU
<A href="MB04WR.html">
<B>MB04WR</B></A> Generating orthogonal symplectic matrices defined as products of symplectic
reflectors and Givens rotations
<A href="MB04WU.html">
<B>MB04WU</B></A> Generating an orthogonal basis spanning an isotropic subspace
(unblocked version)
<A href="MB04XY.html">
<B>MB04XY</B></A> Applying Householder transformations for bidiagonalization (stored
in factored form) to one or two matrices, from the left
<A href="MB04YW.html">
<B>MB04YW</B></A> One QR or QL iteration step onto an unreduced bidiagonal submatrix
of a bidiagonal matrix
</PRE>
<h3>MC - Polynomial and Rational Function Manipulation</h3>
<h4>Scalar Polynomials</h4>
<PRE>
<A href="MC01PY.html">
<B>MC01PY</B></A> Coefficients of a real polynomial, stored in decreasing order,
given its zeros
</PRE>
<h4>Polynomial Matrices</h4>
<PRE>
<A href="MC03NX.html">
<B>MC03NX</B></A> Construction of a pencil sE-A related to a given polynomial matrix
</PRE>
<h3>MD - Optimization</h3>
<h4>Unconstrained Nonlinear Least Squares</h4>
<PRE>
<A href="MD03BX.html">
<B>MD03BX</B></A> QR factorization with column pivoting and error vector
transformation
<A href="MD03BY.html">
<B>MD03BY</B></A> Finding the Levenberg-Marquardt parameter
</PRE>
<HR>
<A NAME="N"><H2>N - Nonlinear Systems</H2></A>
<h3>NF - Wiener Systems</h3>
<h4>Wiener Systems Identification</h4>
<PRE>
<A href="NF01AD.html">
<B>NF01AD</B></A> Computing the output of a Wiener system
<A href="NF01AY.html">
<B>NF01AY</B></A> Computing the output of a set of neural networks
<A href="NF01BD.html">
<B>NF01BD</B></A> Computing the Jacobian of a Wiener system
<A href="NF01BP.html">
<B>NF01BP</B></A> Finding the Levenberg-Marquardt parameter
<A href="NF01BQ.html">
<B>NF01BQ</B></A> Solution of the linear system J*x = b, D*x = 0, D diagonal
<A href="NF01BR.html">
<B>NF01BR</B></A> Solution of the linear system op(R)*x = b, R block upper
triangular stored in a compressed form
<A href="NF01BS.html">
<B>NF01BS</B></A> QR factorization of a structured Jacobian matrix
<A href="NF01BU.html">
<B>NF01BU</B></A> Computing J'*J + c*I, for the Jacobian J given in a
compressed form
<A href="NF01BV.html">
<B>NF01BV</B></A> Computing J'*J + c*I, for a full Jacobian J (one output
variable)
<A href="NF01BW.html">
<B>NF01BW</B></A> Matrix-vector product x <-- (J'*J + c*I)*x, for J in a
compressed form
<A href="NF01BX.html">
<B>NF01BX</B></A> Matrix-vector product x <-- (A'*A + c*I)*x, for a
full matrix A
<A href="NF01BY.html">
<B>NF01BY</B></A> Computing the Jacobian of the error function for a neural
network (for one output variable)
</PRE>
<HR>
<A NAME="S"><H2>S - Synthesis Routines</H2></A>
<h3>SB - State-Space Synthesis</h3>
<h4>Eigenvalue/Eigenvector Assignment</h4>
<PRE>
<A href="SB01BX.html">
<B>SB01BX</B></A> Choosing the closest real (complex conjugate) eigenvalue(s) to
a given real (complex) value
<A href="SB01BY.html">
<B>SB01BY</B></A> Pole placement for systems of order 1 or 2
<A href="SB01FY.html">
<B>SB01FY</B></A> Inner denominator of a right-coprime factorization of an unstable system
of order 1 or 2
</PRE>
<h4>Riccati Equations</h4>
<PRE>
<A href="SB02MU.html">
<B>SB02MU</B></A> Constructing the 2n-by-2n Hamiltonian or symplectic matrix for
linear-quadratic optimization problems
<A href="SB02RU.html">
<B>SB02RU</B></A> Constructing the 2n-by-2n Hamiltonian or symplectic matrix for
linear-quadratic optimization problems (efficient and accurate
version of SB02MU)
<A href="SB02OY.html">
<B>SB02OY</B></A> Constructing and compressing the extended Hamiltonian or symplectic
matrix pairs for linear-quadratic optimization problems
</PRE>
<h4>Lyapunov Equations</h4>
<PRE>
<A href="SB03MV.html">
<B>SB03MV</B></A> Solving a discrete-time Lyapunov equation for a 2-by-2 matrix
<A href="SB03MW.html">
<B>SB03MW</B></A> Solving a continuous-time Lyapunov equation for a 2-by-2 matrix
<A href="SB03MX.html">
<B>SB03MX</B></A> Solving a discrete-time Lyapunov equation with matrix A quasi-triangular
<A href="SB03MY.html">
<B>SB03MY</B></A> Solving a continuous-time Lyapunov equation with matrix A quasi-triangular
<A href="SB03OT.html">
<B>SB03OT</B></A> Solving (for Cholesky factor) stable continuous- or discrete-time
Lyapunov equations, with A quasi-triangular and R triangular
<A href="SB03OS.html">
<B>SB03OS</B></A> Solving (for Cholesky factor) stable continuous- or discrete-time
complex Lyapunov equations, with matrices S and R triangular
<A href="SB03OU.html">
<B>SB03OU</B></A> Solving (for Cholesky factor) stable continuous- or discrete-time
Lyapunov equations, with A in real Schur form and B rectangular
<A href="SB03OY.html">
<B>SB03OY</B></A> Solving (for Cholesky factor) stable 2-by-2 continuous- or discrete-time
Lyapunov equations, with matrix A having complex conjugate eigenvalues
<A href="SB03QX.html">
<B>SB03QX</B></A> Forward error bound for continuous-time Lyapunov equations
<A href="SB03QY.html">
<B>SB03QY</B></A> Separation and Theta norm for continuous-time Lyapunov equations
<A href="SB03SX.html">
<B>SB03SX</B></A> Forward error bound for discrete-time Lyapunov equations
<A href="SB03SY.html">
<B>SB03SY</B></A> Separation and Theta norm for discrete-time Lyapunov equations
</PRE>
<h4>Sylvester Equations</h4>
<PRE>
<A href="SB03MU.html">
<B>SB03MU</B></A> Solving a discrete-time Sylvester equation for an m-by-n matrix X,
1 <= m,n <= 2
<A href="SB03OR.html">
<B>SB03OR</B></A> Solving quasi-triangular continuous- or discrete-time Sylvester equations,
for an n-by-m matrix X, 1 <= m <= 2
<A href="SB04MR.html">
<B>SB04MR</B></A> Solving a linear algebraic system whose coefficient matrix (stored
compactly) has zeros below the second subdiagonal
<A href="SB04MU.html">
<B>SB04MU</B></A> Constructing and solving a linear algebraic system whose coefficient
matrix (stored compactly) has zeros below the second subdiagonal
<A href="SB04MW.html">
<B>SB04MW</B></A> Solving a linear algebraic system whose coefficient matrix (stored
compactly) has zeros below the first subdiagonal
<A href="SB04MY.html">
<B>SB04MY</B></A> Constructing and solving a linear algebraic system whose coefficient
matrix (stored compactly) has zeros below the first subdiagonal
<A href="SB04NV.html">
<B>SB04NV</B></A> Constructing right-hand sides for a system of equations in
Hessenberg form solved via SB04NX
<A href="SB04NW.html">
<B>SB04NW</B></A> Constructing the right-hand side for a system of equations in
Hessenberg form solved via SB04NY
<A href="SB04NX.html">
<B>SB04NX</B></A> Solving a system of equations in Hessenberg form with two consecutive
offdiagonals and two right-hand sides
<A href="SB04NY.html">
<B>SB04NY</B></A> Solving a system of equations in Hessenberg form with one offdiagonal
and one right-hand side
<A href="SB04OW.html">
<B>SB04OW</B></A> Solving a periodic Sylvester equation with matrices in periodic Schur form
<A href="SB04PX.html">
<B>SB04PX</B></A> Solving a discrete-time Sylvester equation for matrices of order <= 2
<A href="SB04PY.html">
<B>SB04PY</B></A> Solving a discrete-time Sylvester equation with matrices in Schur form
<A href="SB04QR.html">
<B>SB04QR</B></A> Solving a linear algebraic system whose coefficient matrix (stored
compactly) has zeros below the third subdiagonal
<A href="SB04QU.html">
<B>SB04QU</B></A> Constructing and solving a linear algebraic system whose coefficient
matrix (stored compactly) has zeros below the third subdiagonal
<A href="SB04QY.html">
<B>SB04QY</B></A> Constructing and solving a linear algebraic system whose coefficient
matrix (stored compactly) has zeros below the first subdiagonal
(discrete-time case)
<A href="SB04RV.html">
<B>SB04RV</B></A> Constructing right-hand sides for a system of equations in
Hessenberg form solved via SB04RX
<A href="SB04RW.html">
<B>SB04RW</B></A> Constructing the right-hand side for a system of equations in
Hessenberg form solved via SB04RY
<A href="SB04RX.html">
<B>SB04RX</B></A> Solving a system of equations in Hessenberg form with two consecutive
offdiagonals and two right-hand sides (discrete-time case)
<A href="SB04RY.html">
<B>SB04RY</B></A> Solving a system of equations in Hessenberg form with one offdiagonal
and one right-hand side (discrete-time case)
</PRE>
<h4>Optimal Regulator Problems</h4>
<PRE>
<A href="SB10JD.html">
<B>SB10JD</B></A> Conversion of a descriptor state-space system into regular
state-space form
<A href="SB10LD.html">
<B>SB10LD</B></A> Closed-loop system matrices for a system with robust controller
<A href="SB10PD.html">
<B>SB10PD</B></A> Normalization of a system for H-infinity controller design
<A href="SB10QD.html">
<B>SB10QD</B></A> State feedback and output injection matrices for an H-infinity
(sub)optimal state controller (continuous-time)
<A href="SB10RD.html">
<B>SB10RD</B></A> H-infinity (sub)optimal controller matrices using state feedback
and output injection matrices (continuous-time)
<A href="SB10SD.html">
<B>SB10SD</B></A> H2 optimal controller matrices for a normalized discrete-time system
<A href="SB10TD.html">
<B>SB10TD</B></A> H2 optimal controller matrices for a discrete-time system
<A href="SB10UD.html">
<B>SB10UD</B></A> Normalization of a system for H2 controller design
<A href="SB10VD.html">
<B>SB10VD</B></A> State feedback and output injection matrices for an H2 optimal
state controller (continuous-time)
<A href="SB10WD.html">
<B>SB10WD</B></A> H2 optimal controller matrices using state feedback and
output injection matrices (continuous-time)
<A href="SB10YD.html">
<B>SB10YD</B></A> Fitting frequency response data with a stable, minimum phase
SISO system
<A href="SB10ZP.html">
<B>SB10ZP</B></A> Transforming a SISO system into a stable and minimum phase one
</PRE>
<h4>Controller Reduction</h4>
<PRE>
<A href="SB16AY.html">
<B>SB16AY</B></A> Cholesky factors of the frequency-weighted controllability and
observability Grammians for controller reduction
<A href="SB16CY.html">
<B>SB16CY</B></A> Cholesky factors of controllability and observability Grammians
of coprime factors of a state-feedback controller
</PRE>
<h3>SG - Generalized State-Space Synthesis</h3>
<h4>Generalized Lyapunov Equations</h4>
<PRE>
<A href="SG02CV.html">
<B>SG02CV</B></A> Computation of residual matrix for a continuous-time or discrete-time
reduced Lyapunov equation
<A href="SG03AX.html">
<B>SG03AX</B></A> Solving a generalized discrete-time Lyapunov equation with
A quasi-triangular and E upper triangular
<A href="SG03AY.html">
<B>SG03AY</B></A> Solving a generalized continuous-time Lyapunov equation with
A quasi-triangular and E upper triangular
<A href="SG03BU.html">
<B>SG03BU</B></A> Solving (for Cholesky factor) stable generalized discrete-time
Lyapunov equations with A quasi-triangular, and E, B upper triangular
<A href="SG03BS.html">
<B>SG03BS</B></A> Solving (for Cholesky factor) stable generalized discrete-time
complex Lyapunov equations with A, E, and B upper triangular
<A href="SG03BV.html">
<B>SG03BV</B></A> Solving (for Cholesky factor) stable generalized continuous-time
Lyapunov equations with A quasi-triangular, and E, B upper triangular
<A href="SG03BT.html">
<B>SG03BT</B></A> Solving (for Cholesky factor) stable generalized continuous-time
complex Lyapunov equations with A, E, and B upper triangular
<A href="SG03BX.html">
<B>SG03BX</B></A> Solving (for Cholesky factor) stable generalized 2-by-2 Lyapunov equations
</PRE>
<h4>Generalized Sylvester Equations</h4>
<PRE>
<A href="SG03BW.html">
<B>SG03BW</B></A> Solving a generalized Sylvester equation with A quasi-triangular
and E upper triangular, for X m-by-n, n = 1 or 2
</PRE>
<HR>
<A NAME="T"><H2>T - Transformation Routines</H2></A>
<h3>TB - State-Space</h3>
<h4>State-Space Transformations</h4>
<PRE>
<A href="TB01KX.html">
<B>TB01KX</B></A> Additive spectral decomposition of the transfer-function matrix of a standard system
<A href="TB01UX.html">
<B>TB01UX</B></A> Observable-unobservable decomposition of a standard system
<A href="TB01VD.html">
<B>TB01VD</B></A> Conversion of a discrete-time system to output normal form
<A href="TB01VY.html">
<B>TB01VY</B></A> Conversion of the output normal form of a discrete-time system
to a state-space representation
<A href="TB01XD.html">
<B>TB01XD</B></A> Special similarity transformation of the dual state-space system
<A href="TB01XZ.html">
<B>TB01XZ</B></A> Special similarity transformation of the dual state-space system
(complex case)
<A href="TB01YD.html">
<B>TB01YD</B></A> Special similarity transformation of a state-space system
</PRE>
<h4>State-Space to Rational Matrix Conversion</h4>
<PRE>
<A href="TB04BV.html">
<B>TB04BV</B></A> Strictly proper part of a proper transfer function matrix
<A href="TB04BW.html">
<B>TB04BW</B></A> Sum of a rational matrix and a real matrix
<A href="TB04BX.html">
<B>TB04BX</B></A> Gain of a SISO linear system, given (A,b,c,d), its poles and zeros
</PRE>
<h3>TC - Polynomial Matrix</h3>
<h3>TD - Rational Matrix</h3>
<h3>TF - Time Response</h3>
<PRE>
<A href="TF01MX.html">
<B>TF01MX</B></A> Output response of a linear discrete-time system, given a
general system matrix (each output is a column of the result)
<A href="TF01MY.html">
<B>TF01MY</B></A> Output response of a linear discrete-time system, given the
system matrices (each output is a column of the result)
</PRE>
<h3>TG - Generalized State-space</h3>
<h4>Generalized State-space Transformations</h4>
<PRE>
<A href="TG01HU.html">
<B>TG01HU</B></A> Staircase controllability representation of a multi-input descriptor system
<A href="TG01HX.html">
<B>TG01HX</B></A> Orthogonal reduction of a descriptor system to a system with
the same transfer-function matrix and without uncontrollable finite
eigenvalues
<A href="TG01HY.html">
<B>TG01HY</B></A> Orthogonal reduction of a descriptor system to a system with
the same transfer-function matrix and without uncontrollable finite
eigenvalues (blocked version)
<A href="TG01KD.html">
<B>TG01KD</B></A> Orthogonal equivalence transformation of a SISO descriptor system
with E upper triangular (TG01OA version with more complex interface)
<A href="TG01KZ.html">
<B>TG01KZ</B></A> Unitary equivalence transformation of a complex SISO descriptor system
with E upper triangular (TG01OB version with more complex interface)
<A href="TG01LY.html">
<B>TG01LY</B></A> Finite-infinite decomposition of a structured descriptor system
<A href="TG01NX.html">
<B>TG01NX</B></A> Block-diagonal decomposition of a descriptor system in
generalized real Schur form
<A href="TG01OA.html">
<B>TG01OA</B></A> Orthogonal equivalence transformation of a SISO descriptor system
with E upper triangular, so that B becomes parallel to the first unit vector
and E keeps its structure
<A href="TG01OB.html">
<B>TG01OB</B></A> Unitary equivalence transformation of a complex SISO descriptor system
with E upper triangular, so that B becomes parallel to the first unit vector
and E keeps its structure
</PRE>
<HR>
<A NAME="U"><H2>U - Utility Routines</H2></A>
<h3>UD - Numerical Data Handling</h3>
<HR>
</BODY>
</HTML>
|