File: TIB01CD.f

package info (click to toggle)
slicot 5.9.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,528 kB
  • sloc: fortran: 148,076; makefile: 964; sh: 57
file content (241 lines) | stat: -rw-r--r-- 11,057 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
C
C SPDX-License-Identifier: BSD-3-Clause
C
*     IB01CD EXAMPLE PROGRAM TEXT
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          LDA, LDB, LDC, LDD, LDR, LDU, LDV, LDW1, LDW2,
     $                 LDW4, LDW5, LDWORK, LDY, LIWORK, LMAX, MMAX,
     $                 NMAX, NOBRMX, NSMPMX
      PARAMETER        ( LMAX = 5, MMAX = 5, NOBRMX = 15, NSMPMX = 1000,
     $                   NMAX = NOBRMX - 1, LDA = NMAX, LDB = NMAX,
     $                   LDC  = LMAX, LDD = LMAX, LDV = NMAX,
     $                   LDR  = MAX( 2*( MMAX + LMAX )*NOBRMX,
     $                               3*MMAX*NOBRMX ), LDU = NSMPMX,
     $                   LDW1 = MAX( LMAX*( NOBRMX - 1 )*NMAX + NMAX +
     $                               MAX( 6*MMAX, 4*LMAX )*NOBRMX,
     $                               LMAX*NOBRMX*NMAX +
     $                               MAX( LMAX*( NOBRMX - 1 )*NMAX +
     $                                    3*NMAX + LMAX +
     $                                    ( 2*MMAX + LMAX )*NOBRMX,
     $                                    2*LMAX*( NOBRMX - 1 )*NMAX +
     $                                    NMAX*NMAX + 8*NMAX,
     $                                    NMAX +
     $                                    4*( MMAX*NOBRMX + NMAX ) ) ),
     $                   LDW2 = LMAX*NOBRMX*NMAX +
     $                          MMAX*NOBRMX*( NMAX + LMAX )*
     $                          ( MMAX*( NMAX + LMAX ) + 1 ) +
     $                          MAX( ( NMAX + LMAX )**2,
     $                          4*MMAX*( NMAX + LMAX ) + 1 ),
     $                   LDW4 = NSMPMX*LMAX*NMAX*( MMAX + 1 ) +
     $                          MAX( NMAX +
     $                               MAX( 2*NMAX*NMAX + NMAX,
     $                                    MMAX +
     $                                    MAX( 2*NMAX*( MMAX + 1 ),
     $                                         MMAX ),
     $                                    6*NMAX*( MMAX + 1 ) ),
     $                               2*MMAX*MMAX*NMAX + 6*MMAX ),
     $                   LDW5 = ( LMAX*MMAX + NMAX*( MMAX + 1 ) )*
     $                          NMAX*( MMAX + 1 ) +
     $                          MAX( ( LMAX*MMAX +
     $                               LMAX*NMAX*( MMAX + 1 ) )*
     $                               NMAX*( MMAX + 1 ) +
     $                               NMAX*NMAX*MMAX + LMAX*NMAX +
     $                               MAX( 2*NMAX*NMAX + NMAX,
     $                                    MMAX +
     $                                    MAX( 2*NMAX*( MMAX + 1 ),
     $                                         MMAX ),
     $                                    6*NMAX*( MMAX + 1 ) ),
     $                               2*MMAX*MMAX*NMAX + 6*MMAX ),
     $                   LDWORK = MAX( 6*( MMAX + LMAX )*NOBRMX,
     $                                 ( MMAX + LMAX )*( 4*NOBRMX*
     $                                 ( MMAX + LMAX + 2 ) - 2 ),
     $                                 ( MMAX + LMAX )*4*NOBRMX*
     $                                 ( NOBRMX + 1 ), LDW1, LDW2,
     $                                 3 + ( NMAX + MMAX + LMAX )*NMAX +
     $                                 MAX( 5*NMAX, 3,
     $                                      MIN( LDW4, LDW5 ) ) ),
     $                   LDY = NSMPMX,
     $                   LIWORK = MAX( ( MMAX + LMAX )*NOBRMX,
     $                                 MMAX*NOBRMX + NMAX,
     $                                 MMAX*( NMAX + LMAX ),
     $                                 NMAX*MMAX + NMAX, MMAX )
     $                 )
*     .. Local Scalars ..
      LOGICAL          NGIVEN
      CHARACTER        ALG, BATCH, COMUSE, CONCT, CTRL, JOB, JOBBD,
     $                 JOBCK, JOBD, JOBDA, JOBX0, METH, METHA
      INTEGER          I, ICYCLE, II, INFO, IWARN, J, L, M, N, NCYCLE,
     $                 NGIV, NOBR, NSAMPL, NSMP
      DOUBLE PRECISION RCOND, TOL
*     .. Local Arrays ..
      DOUBLE PRECISION A(LDA, NMAX), B(LDB, MMAX), C(LDC, NMAX),
     $                 D(LDD, MMAX), DUM(1), DWORK(LDWORK),
     $                 R(LDR, 2*(MMAX+LMAX)*NOBRMX),
     $                 SV(LMAX*NOBRMX), U(LDU, MMAX), V(LDV, NMAX),
     $                 X0(NMAX), Y(LDY, LMAX)
      INTEGER          IWORK(LIWORK)
      LOGICAL          BWORK(1)
*     .. External Functions ..
      LOGICAL          LSAME
      EXTERNAL         LSAME
*     .. External Subroutines ..
      EXTERNAL         IB01AD, IB01BD, IB01CD
*     .. Intrinsic Functions ..
      INTRINSIC        MAX, MIN
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
*     If the value of N is positive, it will be taken as system order.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) NOBR, N, M, L, NSMP, RCOND, TOL
      READ ( NIN, FMT = * ) METH, ALG, JOBD, BATCH, CONCT, CTRL, JOB,
     $                      COMUSE, JOBX0
      IF ( LSAME( BATCH, 'F' ) ) THEN
         READ ( NIN, FMT = * ) NCYCLE
      ELSE
         NCYCLE = 1
      END IF
      NSAMPL = NCYCLE*NSMP
*
      NGIVEN = N.GT.0
      IF( NGIVEN )
     $   NGIV = N
      IF ( NOBR.LE.0 .OR. NOBR.GT.NOBRMX ) THEN
         WRITE ( NOUT, FMT = 99997 ) NOBR
      ELSE IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
         WRITE ( NOUT, FMT = 99996 ) M
      ELSE IF ( L.LE.0 .OR. L.GT.LMAX ) THEN
         WRITE ( NOUT, FMT = 99995 ) L
      ELSE IF ( NSMP.LT.0 .OR. NSMP.GT.NSMPMX .OR.
     $        ( NSMP.LT.2*( M + L + 1 )*NOBR - 1 .AND.
     $          LSAME( BATCH, 'O' ) ) .OR.
     $        ( NSAMPL.LT.2*( M + L + 1 )*NOBR - 1 .AND.
     $          LSAME( BATCH, 'L' ) ) .OR.
     $          NSMP.LT.2*NOBR .AND. ( LSAME( BATCH, 'F' ) .OR.
     $                                 LSAME( BATCH, 'I' ) ) ) THEN
         WRITE ( NOUT, FMT = 99994 ) NSMP
      ELSE IF ( NCYCLE.LE.0 .OR. NSAMPL.GT.NSMPMX ) THEN
         WRITE ( NOUT, FMT = 99993 ) NCYCLE
      ELSE IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99983 ) N
      ELSE
*        Read the matrices U and Y from the input file.
         IF ( M.GT.0 )
     $      READ ( NIN, FMT = * )
     $                         ( ( U(I,J), J = 1, M ), I = 1, NSAMPL )
         READ ( NIN, FMT = * ) ( ( Y(I,J), J = 1, L ), I = 1, NSAMPL )
*        Force some options, depending on the specifications.
         IF ( LSAME( METH, 'C' ) ) THEN
            METHA = 'M'
            JOBDA = 'N'
         ELSE
            METHA = METH
            JOBDA = JOBD
         END IF
*        The covariances and Kalman gain matrix are not computed.
         JOBCK = 'N'
         IF ( LSAME( JOB, 'A' ) .OR. LSAME( JOB, 'C' ) ) THEN
            JOBBD = 'D'
         ELSE
            JOBBD = JOB
         END IF
         IF ( LSAME( COMUSE, 'C' ) ) THEN
            JOB = 'C'
         ELSE IF ( LSAME( COMUSE, 'U' ) ) THEN
            JOB = 'A'
         END IF
*        Compute the  R  factor from a QR (or Cholesky) factorization
*        of the Hankel-like matrix (or correlation matrix).
         DO 10 ICYCLE = 1, NCYCLE
            II = ( ICYCLE - 1 )*NSMP + 1
            IF ( NCYCLE.GT.1 ) THEN
               IF ( ICYCLE.GT.1 )      BATCH = 'I'
               IF ( ICYCLE.EQ.NCYCLE ) BATCH = 'L'
            END IF
            CALL IB01AD( METHA, ALG, JOBDA, BATCH, CONCT, CTRL, NOBR, M,
     $                   L, NSMP, U(II,1), LDU, Y(II,1), LDY, N, R, LDR,
     $                   SV, RCOND, TOL, IWORK, DWORK, LDWORK, IWARN,
     $                   INFO )
   10    CONTINUE
         IF ( INFO.NE.0 ) THEN
            WRITE ( NOUT, FMT = 99998 ) INFO
         ELSE
            IF ( IWARN.NE.0 )
     $         WRITE ( NOUT, FMT = 99990 ) IWARN
            IF( NGIVEN )
     $         N = NGIV
*           Compute the system matrices and x0.
            CALL IB01BD( METH, JOB, JOBCK, NOBR, N, M, L, NSMP, R,
     $                   LDR, A, LDA, C, LDC, B, LDB, D, LDD, DUM, 1,
     $                   DUM, 1, DUM, 1, DUM, 1, RCOND, IWORK, DWORK,
     $                   LDWORK, BWORK, IWARN, INFO )
            IF ( INFO.NE.0 ) THEN
               WRITE ( NOUT, FMT = 99982 ) INFO
            ELSE
               IF ( IWARN.NE.0 )
     $            WRITE ( NOUT, FMT = 99981 ) IWARN
               CALL IB01CD( JOBX0, COMUSE, JOBBD, N, M, L, NSMP, A, LDA,
     $                      B, LDB, C, LDC, D, LDD, U, LDU, Y, LDY, X0,
     $                      V, LDV, RCOND, IWORK, DWORK, LDWORK, IWARN,
     $                      INFO )
               IF ( INFO.NE.0 ) THEN
                  WRITE ( NOUT, FMT = 99992 ) INFO
               ELSE
                  IF ( IWARN.NE.0 )
     $               WRITE ( NOUT, FMT = 99991 ) IWARN
                  IF ( LSAME( JOB, 'A' ) .OR. LSAME( JOB, 'C' ) ) THEN
                     WRITE ( NOUT, FMT = 99989 )
                     DO 20 I = 1, N
                        WRITE ( NOUT, FMT = 99988 ) ( A(I,J), J = 1,N )
   20                CONTINUE
                     WRITE ( NOUT, FMT = 99987 )
                     DO 30 I = 1, L
                        WRITE ( NOUT, FMT = 99988 ) ( C(I,J), J = 1,N )
   30                CONTINUE
                  END IF
                  IF ( LSAME( COMUSE, 'C' ) ) THEN
                     WRITE ( NOUT, FMT = 99986 )
                     DO 40 I = 1, N
                        WRITE ( NOUT, FMT = 99988 ) ( B(I,J), J = 1,M )
   40                CONTINUE
                     IF ( LSAME( JOBBD, 'D' ) ) THEN
                        WRITE ( NOUT, FMT = 99985 )
                        DO 50 I = 1, L
                           WRITE ( NOUT, FMT = 99988 )
     $                           ( D(I,J), J = 1,M )
   50                   CONTINUE
                     END IF
                  END IF
                  IF ( LSAME( JOBX0, 'X' ) ) THEN
                     WRITE ( NOUT, FMT = 99984 )
                     WRITE ( NOUT, FMT = 99988 ) ( X0(I), I = 1,N )
                  END IF
               END IF
            END IF
         END IF
      END IF
      STOP
99999 FORMAT ( ' IB01CD EXAMPLE PROGRAM RESULTS', /1X)
99998 FORMAT ( ' INFO on exit from IB01AD = ',I2)
99997 FORMAT (/' NOBR is out of range.',/' NOBR = ', I5)
99996 FORMAT (/' M is out of range.',/' M = ', I5)
99995 FORMAT (/' L is out of range.',/' L = ', I5)
99994 FORMAT (/' NSMP is out of range.',/' NSMP = ', I5)
99993 FORMAT (/' NCYCLE is out of range.',/' NCYCLE = ', I5)
99992 FORMAT ( ' INFO on exit from IB01CD = ',I2)
99991 FORMAT ( ' IWARN on exit from IB01CD = ',I2)
99990 FORMAT ( ' IWARN on exit from IB01AD = ',I2)
99989 FORMAT (/' The system state matrix A is ')
99988 FORMAT (20(1X,F8.4))
99987 FORMAT (/' The system output matrix C is ')
99986 FORMAT (/' The system input matrix B is ')
99985 FORMAT (/' The system input-output matrix D is ')
99984 FORMAT (/' The initial state vector x0 is ')
99983 FORMAT (/' N is out of range.',/' N = ', I5)
99982 FORMAT ( ' INFO on exit from IB01BD = ',I2)
99981 FORMAT ( ' IWARN on exit from IB01BD = ',I2)
      END