1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
C
C SPDX-License-Identifier: BSD-3-Clause
C
* IB01CD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER LDA, LDB, LDC, LDD, LDR, LDU, LDV, LDW1, LDW2,
$ LDW4, LDW5, LDWORK, LDY, LIWORK, LMAX, MMAX,
$ NMAX, NOBRMX, NSMPMX
PARAMETER ( LMAX = 5, MMAX = 5, NOBRMX = 15, NSMPMX = 1000,
$ NMAX = NOBRMX - 1, LDA = NMAX, LDB = NMAX,
$ LDC = LMAX, LDD = LMAX, LDV = NMAX,
$ LDR = MAX( 2*( MMAX + LMAX )*NOBRMX,
$ 3*MMAX*NOBRMX ), LDU = NSMPMX,
$ LDW1 = MAX( LMAX*( NOBRMX - 1 )*NMAX + NMAX +
$ MAX( 6*MMAX, 4*LMAX )*NOBRMX,
$ LMAX*NOBRMX*NMAX +
$ MAX( LMAX*( NOBRMX - 1 )*NMAX +
$ 3*NMAX + LMAX +
$ ( 2*MMAX + LMAX )*NOBRMX,
$ 2*LMAX*( NOBRMX - 1 )*NMAX +
$ NMAX*NMAX + 8*NMAX,
$ NMAX +
$ 4*( MMAX*NOBRMX + NMAX ) ) ),
$ LDW2 = LMAX*NOBRMX*NMAX +
$ MMAX*NOBRMX*( NMAX + LMAX )*
$ ( MMAX*( NMAX + LMAX ) + 1 ) +
$ MAX( ( NMAX + LMAX )**2,
$ 4*MMAX*( NMAX + LMAX ) + 1 ),
$ LDW4 = NSMPMX*LMAX*NMAX*( MMAX + 1 ) +
$ MAX( NMAX +
$ MAX( 2*NMAX*NMAX + NMAX,
$ MMAX +
$ MAX( 2*NMAX*( MMAX + 1 ),
$ MMAX ),
$ 6*NMAX*( MMAX + 1 ) ),
$ 2*MMAX*MMAX*NMAX + 6*MMAX ),
$ LDW5 = ( LMAX*MMAX + NMAX*( MMAX + 1 ) )*
$ NMAX*( MMAX + 1 ) +
$ MAX( ( LMAX*MMAX +
$ LMAX*NMAX*( MMAX + 1 ) )*
$ NMAX*( MMAX + 1 ) +
$ NMAX*NMAX*MMAX + LMAX*NMAX +
$ MAX( 2*NMAX*NMAX + NMAX,
$ MMAX +
$ MAX( 2*NMAX*( MMAX + 1 ),
$ MMAX ),
$ 6*NMAX*( MMAX + 1 ) ),
$ 2*MMAX*MMAX*NMAX + 6*MMAX ),
$ LDWORK = MAX( 6*( MMAX + LMAX )*NOBRMX,
$ ( MMAX + LMAX )*( 4*NOBRMX*
$ ( MMAX + LMAX + 2 ) - 2 ),
$ ( MMAX + LMAX )*4*NOBRMX*
$ ( NOBRMX + 1 ), LDW1, LDW2,
$ 3 + ( NMAX + MMAX + LMAX )*NMAX +
$ MAX( 5*NMAX, 3,
$ MIN( LDW4, LDW5 ) ) ),
$ LDY = NSMPMX,
$ LIWORK = MAX( ( MMAX + LMAX )*NOBRMX,
$ MMAX*NOBRMX + NMAX,
$ MMAX*( NMAX + LMAX ),
$ NMAX*MMAX + NMAX, MMAX )
$ )
* .. Local Scalars ..
LOGICAL NGIVEN
CHARACTER ALG, BATCH, COMUSE, CONCT, CTRL, JOB, JOBBD,
$ JOBCK, JOBD, JOBDA, JOBX0, METH, METHA
INTEGER I, ICYCLE, II, INFO, IWARN, J, L, M, N, NCYCLE,
$ NGIV, NOBR, NSAMPL, NSMP
DOUBLE PRECISION RCOND, TOL
* .. Local Arrays ..
DOUBLE PRECISION A(LDA, NMAX), B(LDB, MMAX), C(LDC, NMAX),
$ D(LDD, MMAX), DUM(1), DWORK(LDWORK),
$ R(LDR, 2*(MMAX+LMAX)*NOBRMX),
$ SV(LMAX*NOBRMX), U(LDU, MMAX), V(LDV, NMAX),
$ X0(NMAX), Y(LDY, LMAX)
INTEGER IWORK(LIWORK)
LOGICAL BWORK(1)
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* .. External Subroutines ..
EXTERNAL IB01AD, IB01BD, IB01CD
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
* If the value of N is positive, it will be taken as system order.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) NOBR, N, M, L, NSMP, RCOND, TOL
READ ( NIN, FMT = * ) METH, ALG, JOBD, BATCH, CONCT, CTRL, JOB,
$ COMUSE, JOBX0
IF ( LSAME( BATCH, 'F' ) ) THEN
READ ( NIN, FMT = * ) NCYCLE
ELSE
NCYCLE = 1
END IF
NSAMPL = NCYCLE*NSMP
*
NGIVEN = N.GT.0
IF( NGIVEN )
$ NGIV = N
IF ( NOBR.LE.0 .OR. NOBR.GT.NOBRMX ) THEN
WRITE ( NOUT, FMT = 99997 ) NOBR
ELSE IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99996 ) M
ELSE IF ( L.LE.0 .OR. L.GT.LMAX ) THEN
WRITE ( NOUT, FMT = 99995 ) L
ELSE IF ( NSMP.LT.0 .OR. NSMP.GT.NSMPMX .OR.
$ ( NSMP.LT.2*( M + L + 1 )*NOBR - 1 .AND.
$ LSAME( BATCH, 'O' ) ) .OR.
$ ( NSAMPL.LT.2*( M + L + 1 )*NOBR - 1 .AND.
$ LSAME( BATCH, 'L' ) ) .OR.
$ NSMP.LT.2*NOBR .AND. ( LSAME( BATCH, 'F' ) .OR.
$ LSAME( BATCH, 'I' ) ) ) THEN
WRITE ( NOUT, FMT = 99994 ) NSMP
ELSE IF ( NCYCLE.LE.0 .OR. NSAMPL.GT.NSMPMX ) THEN
WRITE ( NOUT, FMT = 99993 ) NCYCLE
ELSE IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99983 ) N
ELSE
* Read the matrices U and Y from the input file.
IF ( M.GT.0 )
$ READ ( NIN, FMT = * )
$ ( ( U(I,J), J = 1, M ), I = 1, NSAMPL )
READ ( NIN, FMT = * ) ( ( Y(I,J), J = 1, L ), I = 1, NSAMPL )
* Force some options, depending on the specifications.
IF ( LSAME( METH, 'C' ) ) THEN
METHA = 'M'
JOBDA = 'N'
ELSE
METHA = METH
JOBDA = JOBD
END IF
* The covariances and Kalman gain matrix are not computed.
JOBCK = 'N'
IF ( LSAME( JOB, 'A' ) .OR. LSAME( JOB, 'C' ) ) THEN
JOBBD = 'D'
ELSE
JOBBD = JOB
END IF
IF ( LSAME( COMUSE, 'C' ) ) THEN
JOB = 'C'
ELSE IF ( LSAME( COMUSE, 'U' ) ) THEN
JOB = 'A'
END IF
* Compute the R factor from a QR (or Cholesky) factorization
* of the Hankel-like matrix (or correlation matrix).
DO 10 ICYCLE = 1, NCYCLE
II = ( ICYCLE - 1 )*NSMP + 1
IF ( NCYCLE.GT.1 ) THEN
IF ( ICYCLE.GT.1 ) BATCH = 'I'
IF ( ICYCLE.EQ.NCYCLE ) BATCH = 'L'
END IF
CALL IB01AD( METHA, ALG, JOBDA, BATCH, CONCT, CTRL, NOBR, M,
$ L, NSMP, U(II,1), LDU, Y(II,1), LDY, N, R, LDR,
$ SV, RCOND, TOL, IWORK, DWORK, LDWORK, IWARN,
$ INFO )
10 CONTINUE
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
IF ( IWARN.NE.0 )
$ WRITE ( NOUT, FMT = 99990 ) IWARN
IF( NGIVEN )
$ N = NGIV
* Compute the system matrices and x0.
CALL IB01BD( METH, JOB, JOBCK, NOBR, N, M, L, NSMP, R,
$ LDR, A, LDA, C, LDC, B, LDB, D, LDD, DUM, 1,
$ DUM, 1, DUM, 1, DUM, 1, RCOND, IWORK, DWORK,
$ LDWORK, BWORK, IWARN, INFO )
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99982 ) INFO
ELSE
IF ( IWARN.NE.0 )
$ WRITE ( NOUT, FMT = 99981 ) IWARN
CALL IB01CD( JOBX0, COMUSE, JOBBD, N, M, L, NSMP, A, LDA,
$ B, LDB, C, LDC, D, LDD, U, LDU, Y, LDY, X0,
$ V, LDV, RCOND, IWORK, DWORK, LDWORK, IWARN,
$ INFO )
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99992 ) INFO
ELSE
IF ( IWARN.NE.0 )
$ WRITE ( NOUT, FMT = 99991 ) IWARN
IF ( LSAME( JOB, 'A' ) .OR. LSAME( JOB, 'C' ) ) THEN
WRITE ( NOUT, FMT = 99989 )
DO 20 I = 1, N
WRITE ( NOUT, FMT = 99988 ) ( A(I,J), J = 1,N )
20 CONTINUE
WRITE ( NOUT, FMT = 99987 )
DO 30 I = 1, L
WRITE ( NOUT, FMT = 99988 ) ( C(I,J), J = 1,N )
30 CONTINUE
END IF
IF ( LSAME( COMUSE, 'C' ) ) THEN
WRITE ( NOUT, FMT = 99986 )
DO 40 I = 1, N
WRITE ( NOUT, FMT = 99988 ) ( B(I,J), J = 1,M )
40 CONTINUE
IF ( LSAME( JOBBD, 'D' ) ) THEN
WRITE ( NOUT, FMT = 99985 )
DO 50 I = 1, L
WRITE ( NOUT, FMT = 99988 )
$ ( D(I,J), J = 1,M )
50 CONTINUE
END IF
END IF
IF ( LSAME( JOBX0, 'X' ) ) THEN
WRITE ( NOUT, FMT = 99984 )
WRITE ( NOUT, FMT = 99988 ) ( X0(I), I = 1,N )
END IF
END IF
END IF
END IF
END IF
STOP
99999 FORMAT ( ' IB01CD EXAMPLE PROGRAM RESULTS', /1X)
99998 FORMAT ( ' INFO on exit from IB01AD = ',I2)
99997 FORMAT (/' NOBR is out of range.',/' NOBR = ', I5)
99996 FORMAT (/' M is out of range.',/' M = ', I5)
99995 FORMAT (/' L is out of range.',/' L = ', I5)
99994 FORMAT (/' NSMP is out of range.',/' NSMP = ', I5)
99993 FORMAT (/' NCYCLE is out of range.',/' NCYCLE = ', I5)
99992 FORMAT ( ' INFO on exit from IB01CD = ',I2)
99991 FORMAT ( ' IWARN on exit from IB01CD = ',I2)
99990 FORMAT ( ' IWARN on exit from IB01AD = ',I2)
99989 FORMAT (/' The system state matrix A is ')
99988 FORMAT (20(1X,F8.4))
99987 FORMAT (/' The system output matrix C is ')
99986 FORMAT (/' The system input matrix B is ')
99985 FORMAT (/' The system input-output matrix D is ')
99984 FORMAT (/' The initial state vector x0 is ')
99983 FORMAT (/' N is out of range.',/' N = ', I5)
99982 FORMAT ( ' INFO on exit from IB01BD = ',I2)
99981 FORMAT ( ' IWARN on exit from IB01BD = ',I2)
END
|