1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
|
C
C SPDX-License-Identifier: BSD-3-Clause
C
* MB03LD EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX
PARAMETER ( NMAX = 50 )
INTEGER LDA, LDB, LDDE, LDFG, LDQ, LDWORK, LIWORK
PARAMETER ( LDA = NMAX/2, LDB = NMAX/2, LDDE = NMAX/2,
$ LDFG = NMAX/2, LDQ = 2*NMAX,
$ LDWORK = 8*NMAX*NMAX +
$ MAX( 8*NMAX + 32, NMAX/2 + 168,
$ 272 ),
$ LIWORK = MAX( 32, NMAX + 12, NMAX*2 + 3 ) )
*
* .. Local Scalars ..
CHARACTER COMPQ, ORTH
INTEGER I, INFO, J, M, N, NEIG
*
* .. Local Arrays ..
LOGICAL BWORK( NMAX/2 )
INTEGER IWORK( LIWORK )
DOUBLE PRECISION A( LDA, NMAX/2 ), ALPHAI( NMAX/2 ),
$ ALPHAR( NMAX/2 ), B( LDB, NMAX/2 ),
$ BETA( NMAX/2 ), DE( LDDE, NMAX/2+1 ),
$ DWORK( LDWORK ), FG( LDFG, NMAX/2+1 ),
$ Q( LDQ, 2*NMAX )
LOGICAL LSAME
*
* .. External Subroutines ..
EXTERNAL MB03LD
EXTERNAL LSAME
*
* .. Intrinsic Functions ..
INTRINSIC MAX
*
* .. Executable Statements ..
*
WRITE( NOUT, FMT = 99999 )
* Skip the heading in the data file and read in the data.
READ( NIN, FMT = * )
READ( NIN, FMT = * ) COMPQ, ORTH, N
IF( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE( NOUT, FMT = 99998 ) N
ELSE
M = N/2
READ( NIN, FMT = * ) ( ( A( I, J ), J = 1, M ), I = 1, M )
READ( NIN, FMT = * ) ( ( DE( I, J ), J = 1, M+1 ), I = 1, M )
READ( NIN, FMT = * ) ( ( B( I, J ), J = 1, M ), I = 1, M )
READ( NIN, FMT = * ) ( ( FG( I, J ), J = 1, M+1 ), I = 1, M )
* Compute the eigenvalues and an orthogonal basis of the right
* deflating subspace of a real skew-Hamiltonian/Hamiltonian
* pencil, corresponding to the eigenvalues with strictly negative
* real part.
CALL MB03LD( COMPQ, ORTH, N, A, LDA, DE, LDDE, B, LDB, FG,
$ LDFG, NEIG, Q, LDQ, ALPHAR, ALPHAI, BETA, IWORK,
$ LIWORK, DWORK, LDWORK, BWORK, INFO )
*
IF( INFO.NE.0 ) THEN
WRITE( NOUT, FMT = 99997 ) INFO
ELSE
WRITE( NOUT, FMT = 99996 )
DO 10 I = 1, M
WRITE( NOUT, FMT = 99995 ) ( A( I, J ), J = 1, M )
10 CONTINUE
WRITE( NOUT, FMT = 99994 )
DO 20 I = 1, M
WRITE( NOUT, FMT = 99995 ) ( DE( I, J ), J = 1, M+1 )
20 CONTINUE
WRITE( NOUT, FMT = 99993 )
DO 30 I = 1, M
WRITE( NOUT, FMT = 99995 ) ( B( I, J ), J = 1, M )
30 CONTINUE
WRITE( NOUT, FMT = 99992 )
DO 40 I = 1, M
WRITE( NOUT, FMT = 99995 ) ( FG( I, J ), J = 2, M+1 )
40 CONTINUE
WRITE( NOUT, FMT = 99991 )
WRITE( NOUT, FMT = 99995 ) ( ALPHAR( I ), I = 1, M )
WRITE( NOUT, FMT = 99990 )
WRITE( NOUT, FMT = 99995 ) ( ALPHAI( I ), I = 1, M )
WRITE( NOUT, FMT = 99989 )
WRITE( NOUT, FMT = 99995 ) ( BETA( I ), I = 1, M )
IF( LSAME( COMPQ, 'C' ) .AND. NEIG.GT.0 ) THEN
WRITE( NOUT, FMT = 99988 )
DO 50 I = 1, N
WRITE( NOUT, FMT = 99995 ) ( Q( I, J ), J = 1, NEIG )
50 CONTINUE
END IF
END IF
END IF
STOP
*
99999 FORMAT( 'MB03LD EXAMPLE PROGRAM RESULTS', 1X )
99998 FORMAT( 'N is out of range.', /, 'N = ', I5 )
99997 FORMAT( 'INFO on exit from MB03LD = ', I2 )
99996 FORMAT( 'The matrix A on exit is ' )
99995 FORMAT( 50( 1X, F8.4 ) )
99994 FORMAT( 'The matrix DE on exit is ' )
99993 FORMAT( 'The matrix C1 on exit is ' )
99992 FORMAT( 'The matrix V on exit is ' )
99991 FORMAT( 'The vector ALPHAR is ' )
99990 FORMAT( 'The vector ALPHAI is ' )
99989 FORMAT( 'The vector BETA is ' )
99988 FORMAT( 'The matrix Q is ' )
END
|