1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
|
C
C SPDX-License-Identifier: BSD-3-Clause
C
* MB03XP EXAMPLE PROGRAM TEXT
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX
PARAMETER ( NMAX = 100 )
INTEGER LDA, LDB, LDQ, LDRES, LDZ, LDWORK
PARAMETER ( LDA = NMAX, LDB = NMAX, LDQ = NMAX,
$ LDRES = NMAX, LDWORK = NMAX, LDZ = NMAX )
* .. Local Scalars ..
INTEGER I, IHI, ILO, INFO, J, N
* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), ALPHAI(NMAX), ALPHAR(NMAX),
$ B(LDA,NMAX), BETA(NMAX), DWORK(LDWORK),
$ Q(LDQ,NMAX), RES(LDRES,3*NMAX), Z(LDZ,NMAX)
* .. External Functions ..
DOUBLE PRECISION DLANGE
EXTERNAL DLANGE
* .. External Subroutines ..
EXTERNAL DGEMM, MB03XP, DLACPY
* .. Executable Statements ..
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, ILO, IHI
IF( N.LE.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99990 ) N
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
CALL DLACPY( 'All', N, N, A, LDA, RES(1,N+1), LDRES )
READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,N ), I = 1,N )
CALL DLACPY( 'All', N, N, B, LDB, RES(1,2*N+1), LDRES )
CALL MB03XP( 'S', 'I', 'I', N, ILO, IHI, A, LDA, B, LDB, Q,
$ LDQ, Z, LDZ, ALPHAR, ALPHAI, BETA, DWORK, LDWORK,
$ INFO )
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
WRITE ( NOUT, FMT = 99996 )
DO 10 I = 1, N
WRITE (NOUT, FMT = 99991) ( A(I,J), J = 1,N )
10 CONTINUE
CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, ONE,
$ RES(1,N+1), LDRES, Z, LDZ, ZERO, RES, LDRES )
CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, -ONE,
$ Q, LDQ, A, LDA, ONE, RES, LDRES )
WRITE ( NOUT, FMT = 99989 ) DLANGE( 'Frobenius', N, N, RES,
$ LDRES, DWORK )
WRITE ( NOUT, FMT = 99995 )
DO 20 I = 1, N
WRITE (NOUT, FMT = 99991) ( B(I,J), J = 1,N )
20 CONTINUE
CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, ONE,
$ RES(1,2*N+1), LDRES, Q, LDQ, ZERO, RES, LDRES )
CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, -ONE,
$ Z, LDZ, B, LDB, ONE, RES, LDRES )
WRITE ( NOUT, FMT = 99988 ) DLANGE( 'Frobenius', N, N, RES,
$ LDRES, DWORK )
WRITE ( NOUT, FMT = 99994 )
DO 30 I = 1, N
WRITE (NOUT, FMT = 99991) ( Q(I,J), J = 1,N )
30 CONTINUE
CALL DGEMM( 'Transpose', 'No Transpose', N, N, N, ONE, Q,
$ LDQ, Q, LDQ, ONE, RES, LDRES )
DO 40 I = 1, N
RES(I,I) = RES(I,I) - ONE
40 CONTINUE
WRITE ( NOUT, FMT = 99987 ) DLANGE( 'Frobenius', N, N, RES,
$ LDRES, DWORK )
WRITE ( NOUT, FMT = 99993 )
DO 50 I = 1, N
WRITE (NOUT, FMT = 99991) ( Z(I,J), J = 1,N )
50 CONTINUE
CALL DGEMM( 'Transpose', 'No Transpose', N, N, N, ONE, Z,
$ LDZ, Z, LDZ, ONE, RES, LDRES )
DO 60 I = 1, N
RES(I,I) = RES(I,I) - ONE
60 CONTINUE
WRITE ( NOUT, FMT = 99986 ) DLANGE( 'Frobenius', N, N, RES,
$ LDRES, DWORK )
WRITE ( NOUT, FMT = 99992 )
DO 70 I = 1, N
WRITE ( NOUT, FMT = 99991 )
$ ALPHAR(I), ALPHAI(I), BETA(I)
70 CONTINUE
END IF
END IF
*
STOP
*
99999 FORMAT (' MB03XP EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from MB03XP = ',I2)
99996 FORMAT (' The reduced matrix A is ')
99995 FORMAT (/' The reduced matrix B is ')
99994 FORMAT (/' The orthogonal factor Q is ')
99993 FORMAT (/' The orthogonal factor Z is ')
99992 FORMAT (/4X,'ALPHAR',4X,'ALPHAI',4X,'BETA')
99991 FORMAT (1000(1X,F9.4))
99990 FORMAT (/' N is out of range.',/' N = ',I5)
99989 FORMAT (/' Residual: || A*Z - Q*S ||_F = ',G7.2)
99988 FORMAT (/' Residual: || B*Q - Z*T ||_F = ',G7.2)
99987 FORMAT (/' Orthogonality of Q: || Q''*Q - I ||_F = ',G7.2)
99986 FORMAT (/' Orthogonality of Z: || Z''*Z - I ||_F = ',G7.2)
END
|