File: salloc.1

package info (click to toggle)
slurm-wlm-contrib 24.11.5-4
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid
  • size: 50,600 kB
  • sloc: ansic: 529,598; exp: 64,795; python: 17,051; sh: 9,411; javascript: 6,528; makefile: 4,030; perl: 3,762; pascal: 131
file content (2998 lines) | stat: -rw-r--r-- 103,349 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
.TH salloc "1" "Slurm Commands" "December 2024" "Slurm Commands"

.SH "NAME"
salloc \- Obtain a Slurm job allocation (a set of nodes), execute a command,
and then release the allocation when the command is finished.

.SH "SYNOPSIS"
\fBsalloc\fR [\fIOPTIONS(0)\fR...] [ : [\fIOPTIONS(N)\fR...]] [\fIcommand(0)\fR [\fIargs(0)\fR...]]

Option(s) define multiple jobs in a co\-scheduled heterogeneous job.
For more details about heterogeneous jobs see the document
.br
https://slurm.schedmd.com/heterogeneous_jobs.html

.SH "DESCRIPTION"
salloc is used to allocate a Slurm job allocation, which is a set of resources
(nodes), possibly with some set of constraints (e.g. number of processors per
node). When salloc successfully obtains the requested allocation, it then runs
the command specified by the user. Finally, when the user specified command is
complete, salloc relinquishes the job allocation.

The command may be any program the user wishes. Some typical commands are
xterm, a shell script containing srun commands, and srun (see the EXAMPLES
section). If no command is specified, then \fBsalloc\fR runs the user's default
shell.

The following document describes the influence of various options on the
allocation of cpus to jobs and tasks.
.br
https://slurm.schedmd.com/cpu_management.html

\fBNOTE\fR: The salloc logic includes support to save and restore the terminal
line settings and is designed to be executed in the foreground. If you need to
execute salloc in the background, set its standard input to some file, for
example: "salloc \-n16 a.out </dev/null &"

.SH "RETURN VALUE"
If salloc is unable to execute the user command, it will
return 1 and print errors to stderr. Else if success or if killed by signals
HUP, INT, KILL, or QUIT: it will return 0.

.SH "COMMAND PATH RESOLUTION"

If provided, the command is resolved in the following order:
.br

1. If command starts with ".", then path is constructed as:
current working directory / command
.br
2. If command starts with a "/", then path is considered absolute.
.br
3. If command can be resolved through PATH. See \fBpath_resolution\fR(7).
.br
4. If command is in current working directory.
.P
Current working directory is the calling process working directory unless the
\fB\-\-chdir\fR argument is passed, which will override the current working
directory.

.SH "OPTIONS"
.LP

.TP
\fB\-A\fR, \fB\-\-account\fR=<\fIaccount\fR>
Charge resources used by this job to specified account.
The \fIaccount\fR is an arbitrary string. The account name may
be changed after job submission using the \fBscontrol\fR
command.
.IP

.TP
\fB\-\-acctg\-freq\fR=<\fIdatatype\fR>=<\fIinterval\fR>[,<\fIdatatype\fR>=<\fIinterval\fR>...]
Define the job accounting and profiling sampling intervals in seconds.
This can be used to override the \fIJobAcctGatherFrequency\fR parameter in
the slurm.conf file. <\fIdatatype\fR>=<\fIinterval\fR> specifies the task
sampling interval for the jobacct_gather plugin or a
sampling interval for a profiling type by the
acct_gather_profile plugin. Multiple
comma\-separated <\fIdatatype\fR>=<\fIinterval\fR> pairs
may be specified. Supported \fIdatatype\fR values are:
.RS
.TP 12
\fBtask\fR
Sampling interval for the jobacct_gather plugins and for task
profiling by the acct_gather_profile plugin.
.br
\fBNOTE\fR: This frequency is used to monitor memory usage. If memory limits
are enforced the highest frequency a user can request is what is configured in
the slurm.conf file. It can not be disabled.
.IP

.TP
\fBenergy\fR
Sampling interval for energy profiling using the
acct_gather_energy plugin.
.IP

.TP
\fBnetwork\fR
Sampling interval for infiniband profiling using the
acct_gather_interconnect plugin.
.IP

.TP
\fBfilesystem\fR
Sampling interval for filesystem profiling using the
acct_gather_filesystem plugin.
.IP

.LP
The default value for the task sampling interval is 30 seconds.
The default value for all other intervals is 0.
An interval of 0 disables sampling of the specified type.
If the task sampling interval is 0, accounting
information is collected only at job termination (reducing Slurm
interference with the job).
.br
Smaller (non\-zero) values have a greater impact upon job performance,
but a value of 30 seconds is not likely to be noticeable for
applications having less than 10,000 tasks.
.RE

.TP
\fB\-\-bb\fR=<\fIspec\fR>
Burst buffer specification. The form of the specification is system dependent.
Note the burst buffer may not be accessible from a login node, but require
that salloc spawn a shell on one of its allocated compute nodes.
When the \fB\-\-bb\fR option is used, Slurm parses this option and creates a
temporary burst buffer script file that is used internally by the burst buffer
plugins. See Slurm's burst buffer guide for more information and examples:
.br
https://slurm.schedmd.com/burst_buffer.html
.IP

.TP
\fB\-\-bbf\fR=<\fIfile_name\fR>
Path of file containing burst buffer specification.
The form of the specification is system dependent.
Also see \fB\-\-bb\fR.
Note the burst buffer may not be accessible from a login node, but require
that salloc spawn a shell on one of its allocated compute nodes.
See Slurm's burst buffer guide for more information and examples:
.br
https://slurm.schedmd.com/burst_buffer.html
.IP

.TP
\fB\-\-begin\fR=<\fItime\fR>
Defer eligibility of this job allocation until the specified time.

Time may be of the form \fIHH:MM:SS\fR to run a job at
a specific time of day (seconds are optional).
(If that time is already past, the next day is assumed.)
You may also specify \fImidnight\fR, \fInoon\fR, \fIelevenses\fR (11 AM),
\fIfika\fR (3 PM) or \fIteatime\fR (4 PM) and you can have a time\-of\-day
suffixed with \fIAM\fR or \fIPM\fR for running in the morning or the evening.
You can also say what day the job will be run, by specifying
a date of the form \fIMMDDYY\fR or \fIMM/DD/YY\fR
\fIYYYY\-MM\-DD\fR. Combine date and time using the following
format \fIYYYY\-MM\-DD[THH:MM[:SS]]\fR. You can also
give times like \fInow + count time\-units\fR, where the time\-units
can be \fIseconds\fR (default), \fIminutes\fR, \fIhours\fR,
\fIdays\fR, or \fIweeks\fR and you can tell Slurm to run
the job today with the keyword \fItoday\fR and to run the
job tomorrow with the keyword \fItomorrow\fR.
The value may be changed after job submission using the
\fBscontrol\fR command.
For example:
.nf
   \-\-begin=16:00
   \-\-begin=now+1hour
   \-\-begin=now+60           (seconds by default)
   \-\-begin=2010\-01\-20T12:34:00
.fi

.RS
.PP
Notes on date/time specifications:
 \- Although the 'seconds' field of the HH:MM:SS time specification is
allowed by the code, note that the poll time of the Slurm scheduler
is not precise enough to guarantee dispatch of the job on the exact
second. The job will be eligible to start on the next poll
following the specified time. The exact poll interval depends on the
Slurm scheduler (e.g., 60 seconds with the default sched/builtin).
 \- If no time (HH:MM:SS) is specified, the default is (00:00:00).
 \- If a date is specified without a year (e.g., MM/DD) then the current
year is assumed, unless the combination of MM/DD and HH:MM:SS has
already passed for that year, in which case the next year is used.
.RE

.TP
\fB\-\-bell\fR
Force salloc to ring the terminal bell when the job allocation is granted
(and only if stdout is a tty). By default, salloc only rings the bell
if the allocation is pending for more than ten seconds (and only if stdout
is a tty). Also see the option \fB\-\-no\-bell\fR.
.IP

.TP
\fB\-D\fR, \fB\-\-chdir\fR=<\fIpath\fR>
Change directory to \fIpath\fR before beginning execution. The path
can be specified as full path or relative path to the directory where
the command is executed.
.IP

.TP
\fB\-\-cluster\-constraint\fR=<\fIlist\fR>
Specifies features that a federated cluster must have to have a sibling job
submitted to it. Slurm will attempt to submit a sibling job to a cluster if it
has at least one of the specified features.
.IP

.TP
\fB\-M\fR, \fB\-\-clusters\fR=<\fIstring\fR>
Clusters to issue commands to. Multiple cluster names may be comma separated.
The job will be submitted to the one cluster providing the earliest expected
job initiation time. The default value is the current cluster. A value of
\(aq\fIall\fR' will query to run on all clusters.
Note that the \fBslurmdbd\fR must be up for this option to work properly, unless
running in a federation with \fBFederationParameters=fed_display\fR configured.
.IP

.TP
\fB\-\-comment\fR=<\fIstring\fR>
An arbitrary comment.
.IP

.TP
\fB\-C\fR, \fB\-\-constraint\fR=<\fIlist\fR>
Nodes can have \fBfeatures\fR assigned to them by the Slurm administrator.
Users can specify which of these \fBfeatures\fR are required by their job
using the constraint option. If you are looking for 'soft' constraints please
see \fB\-\-prefer\fR for more information.
Only nodes having features matching the job constraints will be used to
satisfy the request.
Multiple constraints may be specified with AND, OR, matching OR,
resource counts, etc. (some operators are not supported on all system types).

\fBNOTE\fR: Changeable features are features defined by a NodeFeatures plugin.

Supported \fB\-\-constraint\fR options include:
.IP
.PD 1
.RS
.TP
\fBSingle Name\fR
Only nodes which have the specified feature will be used.
For example, \fB\-\-constraint="intel"\fR
.IP

.TP
\fBNode Count\fR
A request can specify the number of nodes needed with some feature
by appending an asterisk and count after the feature name.
For example, \fB\-\-nodes=16 \-\-constraint="graphics*4"\fR
indicates that the job requires 16 nodes and that at least four of those
nodes must have the feature "graphics."
If requesting more than one feature and using node counts, the request
must have square brackets surrounding it.

\fBNOTE\fR: This option is not supported by the helpers NodeFeatures plugin.
Heterogeneous jobs can be used instead.
.IP

.TP
\fBAND\fR
Only nodes with all of specified features will be used.
The ampersand is used for an AND operator.
For example, \fB\-\-constraint="intel&gpu"\fR
.IP

.TP
\fBOR\fR
Only nodes with at least one of specified features will be used.
The vertical bar is used for an OR operator. If changeable features are not
requested, nodes in the allocation can have different features. For example,
\fBsalloc -N2 \-\-constraint="intel|amd"\fR can result in a job allocation
where one node has the intel feature and the other node has the amd feature.
However, if the expression contains a changeable feature, then all OR operators
are automatically treated as Matching OR so that all nodes in the job
allocation have the same set of features. For example,
\fBsalloc -N2 \-\-constraint="foo|bar&baz"\fR
The job is allocated two nodes where both nodes have foo, or bar and baz (one
or both nodes could have foo, bar, and baz). The helpers NodeFeatures plugin
will find the first set of node features that matches all nodes in the job
allocation; these features are set as active features on the node and passed to
RebootProgram (see \fBslurm.conf\fR(5)) and the helper script (see
\fBhelpers.conf\fR(5)). In this case, the helpers plugin uses the first of
"foo" or "bar,baz" that match the two nodes in the job allocation.
.IP

.TP
\fBMatching OR\fR
If only one of a set of possible options should be used for all allocated
nodes, then use the OR operator and enclose the options within square brackets.
For example, \fB\-\-constraint="[rack1|rack2|rack3|rack4]"\fR might
be used to specify that all nodes must be allocated on a single rack of
the cluster, but any of those four racks can be used.
.IP

.TP
\fBMultiple Counts\fR
Specific counts of multiple resources may be specified by using the AND
operator and enclosing the options within square brackets.
For example, \fB\-\-constraint="[rack1*2&rack2*4]"\fR might
be used to specify that two nodes must be allocated from nodes with the feature
of "rack1" and four nodes must be allocated from nodes with the feature
"rack2".

\fBNOTE\fR: This construct does not support multiple Intel KNL NUMA or MCDRAM
modes. For example, while \fB\-\-constraint="[(knl&quad)*2&(knl&hemi)*4]"\fR is
not supported, \fB\-\-constraint="[haswell*2&(knl&hemi)*4]"\fR is supported.
Specification of multiple KNL modes requires the use of a heterogeneous job.

\fBNOTE\fR: This option is not supported by the helpers NodeFeatures plugin.

\fBNOTE\fR: Multiple Counts can cause jobs to be allocated with a non-optimal
network layout.
.IP

.TP
\fBBrackets\fR
Brackets can be used to indicate that you are looking for a set of nodes with
the different requirements contained within the brackets. For example,
\fB\-\-constraint="[(rack1|rack2)*1&(rack3)*2]"\fR will get you one node with
either the "rack1" or "rack2" features and two nodes with the "rack3" feature.
If requesting more than one feature and using node counts, the request
must have square brackets surrounding it.

\fBNOTE\fR: Brackets are only reserved for \fBMultiple Counts\fR and
\fBMatching OR\fR syntax.
AND operators require a count for each feature inside square brackets
(i.e. "[quad*2&hemi*1]"). Slurm will only allow a single set of bracketed
constraints per job.

\fBNOTE\fR: Square brackets are not supported by the helpers NodeFeatures
plugin. Matching OR can be requested without square brackets by using the
vertical bar character with at least one changeable feature.
.IP

.TP
\fBParentheses\fR
Parentheses can be used to group like node features together. For example,
\fB\-\-constraint="[(knl&snc4&flat)*4&haswell*1]"\fR might be used to specify
that four nodes with the features "knl", "snc4" and "flat" plus one node with
the feature "haswell" are required.
Parentheses can also be used to group operations. Without parentheses, node
features are parsed strictly from left to right.
For example,
\fB\-\-constraint="foo&bar|baz"\fR requests nodes with foo and bar, or baz.
\fB\-\-constraint="foo|bar&baz"\fR requests nodes with foo and baz, or bar and
baz (note how baz was AND'd with everything).
\fB\-\-constraint="foo&(bar|baz)"\fR requests nodes with foo and at least
one of bar or baz.
\fBNOTE\fR: OR within parentheses should not be used with a KNL
NodeFeatures plugin but is supported by the helpers NodeFeatures plugin.
.RE
.IP

.TP
\fB\-\-container\fR=<\fIpath_to_container\fR>
Absolute path to OCI container bundle.
.IP

.TP
\fB\-\-container-id\fR=<\fIcontainer_id\fR>
Unique name for OCI container.
.IP

.TP
\fB\-\-contiguous\fR
If set, then the allocated nodes must form a contiguous set.

\fBNOTE\fR: If the SelectType is cons_tres this option won't be honored
with the \fBtopology/tree\fR or \fBtopology/3d_torus\fR
plugins, both of which can modify the node ordering.
.IP

.TP
\fB\-S\fR, \fB\-\-core\-spec\fR=<\fInum\fR>
Count of Specialized Cores per node reserved by the job for system operations
and not used by the application.
If AllowSpecResourcesUsage is enabled a job can override the CoreSpecCount of
all its allocated nodes with this option.
The overridden Specialized Cores will still be reserved for system processes.
The job will get an implicit \fB--exclusive\fR allocation for the rest of
the Cores on the nodes, resulting in the job's processes being able to use (and
being charged for) all the Cores on the nodes except for the overridden
Specialized Cores.
This option can not be used with the \fB\-\-thread\-spec\fR option.

\fBNOTE\fR: Explicitly setting a job's specialized core value implicitly sets
the --exclusive option.
.IP

.TP
\fB\-\-cores\-per\-socket\fR=<\fIcores\fR>
Restrict node selection to nodes with at least the specified number of
cores per socket. See additional information under \fB\-B\fR option
above when task/affinity plugin is enabled.
.br
\fBNOTE\fR: This option may implicitly set the number of tasks (if \fB\-n\fR
was not specified) as one task per requested thread.
.IP

.TP
\fB\-\-cpu\-freq\fR=<\fIp1\fR>[\-\fIp2\fR][:\fIp3\fR]

Request that job steps initiated by srun commands inside this allocation
be run at some requested frequency if possible, on the CPUs selected
for the step on the compute node(s).

\fBp1\fR can be [#### | low | medium | high | highm1] which will set the
frequency scaling_speed to the corresponding value, and set the frequency
scaling_governor to UserSpace. See below for definition of the values.

\fBp1\fR can be [Conservative | OnDemand | Performance | PowerSave] which
will set the scaling_governor to the corresponding value. The governor has to be
in the list set by the slurm.conf option CpuFreqGovernors.

When \fBp2\fR is present, \fBp1\fR will be the minimum scaling frequency and
\fBp2\fR will be the maximum scaling frequency. In that case the governor
\fBp3\fR or CpuFreqDef cannot be UserSpace since it doesn't support a range.

\fBp2\fR can be [#### | medium | high | highm1]. p2 must be greater than p1 and
is incompatible with UserSpace governor.

\fBp3\fR can be [Conservative | OnDemand | Performance | PowerSave | SchedUtil |
UserSpace]
which will set the governor to the corresponding value.

If \fBp3\fR is UserSpace, the frequency scaling_speed, scaling_max_freq and
scaling_min_freq will be statically set to the value defined by \fBp1\fR.

Any requested frequency below the minimum available frequency will be rounded
to the minimum available frequency. In the same way, any requested frequency
above the maximum available frequency will be rounded to the maximum available
frequency.

The \fBCpuFreqDef\fR parameter in slurm.conf will be used to set the governor
in absence of \fBp3\fR. If there's no \fBCpuFreqDef\fR, the default governor
will be to use the system current governor set in each cpu. Specifying a
range without \fBCpuFreqDef\fR or a specific governor is therefore not allowed.

Acceptable values at present include:
.RS
.TP 14
\fB####\fR
frequency in kilohertz
.IP

.TP
\fBLow\fR
the lowest available frequency
.IP

.TP
\fBHigh\fR
the highest available frequency
.IP

.TP
\fBHighM1\fR
(high minus one) will select the next highest available frequency
.IP

.TP
\fBMedium\fR
attempts to set a frequency in the middle of the available range
.IP

.TP
\fBConservative\fR
attempts to use the Conservative CPU governor
.IP

.TP
\fBOnDemand\fR
attempts to use the OnDemand CPU governor (the default value)
.IP

.TP
\fBPerformance\fR
attempts to use the Performance CPU governor
.IP

.TP
\fBPowerSave\fR
attempts to use the PowerSave CPU governor
.IP

.TP
\fBUserSpace\fR
attempts to use the UserSpace CPU governor
.IP

.TP
.RE

The following informational environment variable is set in the job
step when \fB\-\-cpu\-freq\fR option is requested.
.nf
        SLURM_CPU_FREQ_REQ
.fi

This environment variable can also be used to supply the value for the
CPU frequency request if it is set when the 'srun' command is issued.
The \fB\-\-cpu\-freq\fR on the command line will override the
environment variable value. The form on the environment variable is
the same as the command line.
See the \fBENVIRONMENT VARIABLES\fR
section for a description of the SLURM_CPU_FREQ_REQ variable.

\fBNOTE\fR: This parameter is treated as a request, not a requirement.
If the job step's node does not support setting the CPU frequency, or
the requested value is outside the bounds of the legal frequencies, an
error is logged, but the job step is allowed to continue.

\fBNOTE\fR: Setting the frequency for just the CPUs of the job step
implies that the tasks are confined to those CPUs. If task
confinement (i.e. the task/affinity TaskPlugin is enabled, or the task/cgroup
TaskPlugin is enabled with "ConstrainCores=yes" set in cgroup.conf) is not
configured, this parameter is ignored.

\fBNOTE\fR: When the step completes, the frequency and governor of each
selected CPU is reset to the previous values.

\fBNOTE\fR: When submitting jobs with the \fB\-\-cpu\-freq\fR option
with linuxproc as the ProctrackType can cause jobs to run too quickly before
Accounting is able to poll for job information. As a result not all of
accounting information will be present.
.RE
.IP

.TP
\fB\-\-cpus\-per\-gpu\fR=<\fIncpus\fR>
Request that \fIncpus\fR processors be allocated per allocated GPU.
Steps inheriting this value will imply \-\-exact.
Not compatible with the \fB\-\-cpus\-per\-task\fR option.
.IP

.TP
\fB\-c\fR, \fB\-\-cpus\-per\-task\fR=<\fIncpus\fR>
Advise Slurm that ensuing job steps will require \fIncpus\fR processors per
task. By default Slurm will allocate one processor per task.

For instance,
consider an application that has 4 tasks, each requiring 3 processors. If our
cluster is comprised of quad\-processors nodes and we simply ask for
12 processors, the controller might give us only 3 nodes. However, by using
the \-\-cpus\-per\-task=3 options, the controller knows that each task requires
3 processors on the same node, and the controller will grant an allocation
of 4 nodes, one for each of the 4 tasks.

.TP
\fB\-\-deadline\fR=<\fIOPT\fR>
Remove the job if no ending is possible before
this deadline (start > (deadline \- time[\-min])).
Default is no deadline. Note that if neither \fBDefaultTime\fR nor
\fBMaxTime\fR are configured on the partition the job is in, the job will
need to specify some form of time limit (\-\-time[\-min]) if a deadline
is to be used.

Valid time formats are:
.br
HH:MM[:SS] [AM|PM]
.br
MMDD[YY] or MM/DD[/YY] or MM.DD[.YY]
.br
MM/DD[/YY]\-HH:MM[:SS]
.br
YYYY\-MM\-DD[THH:MM[:SS]]]
.br
now[+\fIcount\fR[seconds(default)|minutes|hours|days|weeks]]
.IP

.TP
\fB\-\-delay\-boot\fR=<\fIminutes\fR>
Do not reboot nodes in order to satisfied this job's feature specification if
the job has been eligible to run for less than this time period.
If the job has waited for less than the specified period, it will use only
nodes which already have the specified features.
The argument is in units of minutes.
A default value may be set by a system administrator using the \fBdelay_boot\fR
option of the \fBSchedulerParameters\fR configuration parameter in the
slurm.conf file, otherwise the default value is zero (no delay).
.IP

.TP
\fB\-d\fR, \fB\-\-dependency\fR=<\fIdependency_list\fR>
Defer the start of this job until the specified dependencies have been
satisfied. Once a dependency is satisfied, it is removed from the job.
<\fIdependency_list\fR> is of the form
<\fItype:job_id[:job_id][,type:job_id[:job_id]]\fR> or
<\fItype:job_id[:job_id][?type:job_id[:job_id]]\fR>.
All dependencies must be satisfied if the "," separator is used.
Any dependency may be satisfied if the "?" separator is used.
Only one separator may be used. For instance:
.nf
-d afterok:20:21,afterany:23
.fi
means that the job can run only after a 0 return code of jobs 20 and 21
AND completion of job 23. However:
.nf
-d afterok:20:21?afterany:23
.fi
means that any of the conditions (afterok:20 OR afterok:21 OR afterany:23)
will be enough to release the job.
Many jobs can share the same dependency and these jobs may even belong to
different users. The value may be changed after job submission using the
scontrol command.
Dependencies on remote jobs are allowed in a federation.
Once a job dependency fails due to the termination state of a preceding job,
the dependent job will never be run, even if the preceding job is requeued and
has a different termination state in a subsequent execution.
.IP
.PD
.RS
.TP
\fBafter:job_id[[+time][:jobid[+time]...]]\fR
After the specified jobs start or are cancelled and 'time' in minutes from job
start or cancellation happens, this
job can begin execution. If no 'time' is given then there is no delay after
start or cancellation.
.IP

.TP
\fBafterany:job_id[:jobid...]\fR
This job can begin execution after the specified jobs have terminated.
This is the default dependency type.
.IP

.TP
\fBafterburstbuffer:job_id[:jobid...]\fR
This job can begin execution after the specified jobs have terminated and
any associated burst buffer stage out operations have completed.
.IP

.TP
\fBaftercorr:job_id[:jobid...]\fR
A task of this job array can begin execution after the corresponding task ID
in the specified job has completed successfully (ran to completion with an
exit code of zero).
.IP

.TP
\fBafternotok:job_id[:jobid...]\fR
This job can begin execution after the specified jobs have terminated
in some failed state (non\-zero exit code, node failure, timed out, etc).
This job must be submitted while the specified job is still active or within
\fBMinJobAge\fR seconds after the specified job has ended.
.IP

.TP
\fBafterok:job_id[:jobid...]\fR
This job can begin execution after the specified jobs have successfully
executed (ran to completion with an exit code of zero).
This job must be submitted while the specified job is still active or within
\fBMinJobAge\fR seconds after the specified job has ended.
.IP

.TP
\fBsingleton\fR
This job can begin execution after any previously launched jobs
sharing the same job name and user have terminated.
In other words, only one job by that name and owned by that user can be running
or suspended at any point in time.
In a federation, a singleton dependency must be fulfilled on all clusters
unless DependencyParameters=disable_remote_singleton is used in slurm.conf.
.RE
.IP

.TP
\fB\-m\fR, \fB\-\-distribution\fR={*|block|cyclic|arbitrary|plane=<\fIsize\fR>}[:{*|block|cyclic|fcyclic}[:{*|block|cyclic|fcyclic}]][,{Pack|NoPack}]

Specify alternate distribution methods for remote processes.
For job allocation, this sets environment variables that will be used by
subsequent srun requests and also affects which cores will be selected for
job allocation.

This option controls the distribution of tasks to the nodes on which
resources have been allocated, and the distribution of those resources
to tasks for binding (task affinity). The first distribution
method (before the first ":") controls the distribution of tasks to nodes.
The second distribution method (after the first ":")
controls the distribution of allocated CPUs across sockets for binding
to tasks. The third distribution method (after the second ":") controls
the distribution of allocated CPUs across cores for binding to tasks.
The second and third distributions apply only if task affinity is enabled.
The third distribution is supported only if the task/cgroup plugin is
configured. The default value for each distribution type is specified by *.

Note that with select/cons_tres, the number of CPUs
allocated to each socket and node may be different. Refer to
https://slurm.schedmd.com/mc_support.html
for more information on resource allocation, distribution of tasks to
nodes, and binding of tasks to CPUs.
.RS
First distribution method (distribution of tasks across nodes):

.TP
.B *
Use the default method for distributing tasks to nodes (block).
.IP

.TP
.B block
The block distribution method will distribute tasks to a node such
that consecutive tasks share a node. For example, consider an
allocation of three nodes each with two cpus. A four\-task block
distribution request will distribute those tasks to the nodes with
tasks one and two on the first node, task three on the second node,
and task four on the third node. Block distribution is the default
behavior if the number of tasks exceeds the number of allocated nodes.
.IP

.TP
.B cyclic
The cyclic distribution method will distribute tasks to a node such
that consecutive tasks are distributed over consecutive nodes (in a
round\-robin fashion). For example, consider an allocation of three
nodes each with two cpus. A four\-task cyclic distribution request
will distribute those tasks to the nodes with tasks one and four on
the first node, task two on the second node, and task three on the
third node.
Note that when SelectType is select/cons_tres, the same number of CPUs
may not be allocated on each node. Task distribution will be
round\-robin among all the nodes with CPUs yet to be assigned to tasks.
Cyclic distribution is the default behavior if the number
of tasks is no larger than the number of allocated nodes.
.IP

.TP
.B plane
The tasks are distributed in blocks of size <\fIsize\fR>. The size must be given
or SLURM_DIST_PLANESIZE must be set. The number of tasks
distributed to each node is the same as for cyclic distribution, but the
taskids assigned to each node depend on the plane size. Additional distribution
specifications cannot be combined with this option.
For more details (including examples and diagrams), please see
https://slurm.schedmd.com/mc_support.html and
https://slurm.schedmd.com/dist_plane.html
.IP

.TP
.B arbitrary
The arbitrary method of distribution will allocate processes in\-order
as listed in file designated by the environment variable
SLURM_HOSTFILE. If this variable is listed it will override any
other method specified. If not set the method will default to block.
Inside the hostfile must contain at minimum the number of hosts
requested and be one per line or comma separated. If specifying a
task count (\fB\-n\fR, \fB\-\-ntasks\fR=<\fInumber\fR>), your tasks
will be laid out on the nodes in the order of the file.
.br
\fBNOTE\fR: The arbitrary distribution option on a job allocation only
controls the nodes to be allocated to the job and not the allocation of
CPUs on those nodes. This option is meant primarily to control a job step's
task layout in an existing job allocation for the srun command.
.br
\fBNOTE\fR: If the number of tasks is given and a list of requested nodes is
also given, the number of nodes used from that list will be reduced to match
that of the number of tasks if the number of nodes in the list is greater than
the number of tasks.
.IP

.LP
Second distribution method (distribution of CPUs across sockets for binding):

.TP
.B *
Use the default method for distributing CPUs across sockets (cyclic).
.IP

.TP
.B block
The block distribution method will distribute allocated CPUs
consecutively from the same socket for binding to tasks, before using
the next consecutive socket.
.IP

.TP
.B cyclic
The cyclic distribution method will distribute allocated CPUs for
binding to a given task consecutively from the same socket, and
from the next consecutive socket for the next task, in a
round\-robin fashion across sockets.
Tasks requiring more than one CPU will have all of those CPUs allocated on a
single socket if possible.
.br
\fBNOTE\fR: In nodes with hyper-threading enabled, a task not requesting full
cores may be distributed across sockets. This can be avoided by specifying
\fB\-\-ntasks\-per\-core=1\fR, which forces tasks to allocate full cores.
.IP

.TP
.B fcyclic
The fcyclic distribution method will distribute allocated CPUs
for binding to tasks from consecutive sockets in a
round\-robin fashion across the sockets.
Tasks requiring more than one CPU will have each CPUs allocated in a cyclic
fashion across sockets.
.IP

.LP
Third distribution method (distribution of CPUs across cores for binding):

.TP
.B *
Use the default method for distributing CPUs across cores
(inherited from second distribution method).
.IP

.TP
.B block
The block distribution method will distribute allocated CPUs
consecutively from the same core for binding to tasks, before using
the next consecutive core.
.IP

.TP
.B cyclic
The cyclic distribution method will distribute allocated CPUs for
binding to a given task consecutively from the same core, and
from the next consecutive core for the next task, in a
round\-robin fashion across cores.
.IP

.TP
.B fcyclic
The fcyclic distribution method will distribute allocated CPUs
for binding to tasks from consecutive cores in a
round\-robin fashion across the cores.
.IP

.LP
Optional control for task distribution over nodes:

.TP
.B Pack
Rather than evenly distributing a job step's tasks evenly across its allocated
nodes, pack them as tightly as possible on the nodes.
This only applies when the "block" task distribution method is used.
.IP

.TP
.B NoPack
Rather than packing a job step's tasks as tightly as possible on the nodes,
distribute them evenly.
This user option will supersede the SelectTypeParameters CR_Pack_Nodes
configuration parameter.
.RE
.IP

.TP
\fB\-x\fR, \fB\-\-exclude\fR=<\fInode_name_list\fR>
Explicitly exclude certain nodes from the resources granted to the job.
.IP

.TP
\fB\-\-exclusive\fR[={user|mcs|topo}]
The job allocation can not share nodes (or topology segment  with the "=topo")
with other running jobs (or just other users with the "=user" option or
with the "=mcs" option).
If user/mcsi/topo are not specified (i.e. the job allocation can not share nodes with
other running jobs), the job is allocated all CPUs and GRES on all nodes in the
allocation, but is only allocated as much memory as it requested. This is by
design to support gang scheduling, because suspended jobs still reside in
memory. To request all the memory on a node, use \fB\-\-mem=0\fR.
The default shared/exclusive behavior depends on system configuration and the
partition's \fBOverSubscribe\fR option takes precedence over the job's option.
\fBNOTE\fR: Since shared GRES (MPS) cannot be allocated at the same time as a
sharing GRES (GPU) this option only allocates all sharing GRES and no underlying
shared GRES.

\fBNOTE\fR: This option is mutually exclusive with \fB\-\-oversubscribe\fR.
.IP

.TP
\fB\-\-extra\fR=<\fIstring\fR>
An arbitrary string enclosed in single or double quotes if using spaces or some
special characters.

If \fBSchedulerParameters=extra_constraints\fR is enabled, this string is used
for node filtering based on the \fIExtra\fR field in each node.
.IP

.TP
\fB\-B\fR, \fB\-\-extra\-node\-info\fR=<\fIsockets\fR>[:\fIcores\fR[:\fIthreads\fR]]
Restrict node selection to nodes with at least the specified number of
sockets, cores per socket and/or threads per core.
.br
\fBNOTE\fR: These options do not specify the resource allocation size.
Each value specified is considered a minimum.
An asterisk (*) can be used as a placeholder indicating that all available
resources of that type are to be utilized. Values can also be specified as
min\-max. The individual levels can also be specified in separate options if
desired:
.nf
    \fB\-\-sockets\-per\-node\fR=<\fIsockets\fR>
    \fB\-\-cores\-per\-socket\fR=<\fIcores\fR>
    \fB\-\-threads\-per\-core\fR=<\fIthreads\fR>
.fi
If task/affinity plugin is enabled, then specifying an allocation in this
manner also results in subsequently launched tasks being bound to threads
if the \fB\-B\fR option specifies a thread count, otherwise an option of
\fIcores\fR if a core count is specified, otherwise an option of \fIsockets\fR.
If SelectType is configured to select/cons_tres, it must have a parameter of
CR_Core, CR_Core_Memory, CR_Socket, or CR_Socket_Memory for this option
to be honored.
If not specified, the scontrol show job will display 'ReqS:C:T=*:*:*'. This
option applies to job allocations.
.br
\fBNOTE\fR: This option is mutually exclusive with \fB\-\-hint\fR,
\fB\-\-threads\-per\-core\fR and \fB\-\-ntasks\-per\-core\fR.
.br
\fBNOTE\fR: This option may implicitly set the number of tasks (if \fB\-n\fR
was not specified) as one task per requested thread.
.IP

.TP
\fB\-\-gpu\-bind\fR=[verbose,]<\fItype\fR>
Equivalent to \-\-tres\-bind=gres/gpu:[verbose,]<\fItype\fR>
See \fB\-\-tres\-bind\fR for all options and documentation.
.IP

.TP
\fB\-\-gpu\-freq\fR=[<\fItype\fR]=\fIvalue\fR>[,<\fItype\fR=\fIvalue\fR>][,verbose]
Request that GPUs allocated to the job are configured with specific frequency
values.
This option can be used to independently configure the GPU and its memory
frequencies.
After the job is completed, the frequencies of all affected GPUs will be reset
to the highest possible values.
In some cases, system power caps may override the requested values.
The field \fItype\fR can be "memory".
If \fItype\fR is not specified, the GPU frequency is implied.
The \fIvalue\fR field can either be "low", "medium", "high", "highm1" or
a numeric value in megahertz (MHz).
If the specified numeric value is not possible, a value as close as
possible will be used. See below for definition of the values.
The \fIverbose\fR option causes current GPU frequency information to be logged.
Examples of use include "\-\-gpu\-freq=medium,memory=high" and
"\-\-gpu\-freq=450".

Supported \fIvalue\fR definitions:
.IP
.RS
.TP 10
\fBlow\fR
the lowest available frequency.
.IP

.TP
\fBmedium\fR
attempts to set a frequency in the middle of the available range.
.IP

.TP
\fBhigh\fR
the highest available frequency.
.IP

.TP
\fBhighm1\fR
(high minus one) will select the next highest available frequency.
.RE
.IP

.TP
\fB\-G\fR, \fB\-\-gpus\fR=[\fItype\fR:]<\fInumber\fR>
Specify the total number of GPUs required for the job.
An optional GPU type specification can be supplied.
For example "\-\-gpus=volta:3".
See also the \fB\-\-gpus\-per\-node\fR, \fB\-\-gpus\-per\-socket\fR and
\fB\-\-gpus\-per\-task\fR options.
.br
\fBNOTE\fR: The allocation has to contain at least one GPU per node, or one of
each GPU type per node if types are used. Use heterogeneous jobs if different
nodes need different GPU types.
.IP

.TP
\fB\-\-gpus\-per\-node\fR=[\fItype\fR:]<\fInumber\fR>
Specify the number of GPUs required for the job on each node included in
the job's resource allocation.
An optional GPU type specification can be supplied.
For example "\-\-gpus\-per\-node=volta:3".
Multiple options can be requested in a comma separated list, for example:
"\-\-gpus\-per\-node=volta:3,kepler:1".
See also the \fB\-\-gpus\fR, \fB\-\-gpus\-per\-socket\fR and
\fB\-\-gpus\-per\-task\fR options.
.IP

.TP
\fB\-\-gpus\-per\-socket\fR=[\fItype\fR:]<\fInumber\fR>
Specify the number of GPUs required for the job on each socket included in
the job's resource allocation.
An optional GPU type specification can be supplied.
For example "\-\-gpus\-per\-socket=volta:3".
Multiple options can be requested in a comma separated list, for example:
"\-\-gpus\-per\-socket=volta:3,kepler:1".
Requires job to specify a sockets per node count ( \-\-sockets\-per\-node).
See also the \fB\-\-gpus\fR, \fB\-\-gpus\-per\-node\fR and
\fB\-\-gpus\-per\-task\fR options.
.IP

.TP
\fB\-\-gpus\-per\-task\fR=[\fItype\fR:]<\fInumber\fR>
Specify the number of GPUs required for the job on each task to be spawned
in the job's resource allocation.
An optional GPU type specification can be supplied.
For example "\-\-gpus\-per\-task=volta:1". Multiple options can be
requested in a comma separated list, for example:
"\-\-gpus\-per\-task=volta:3,kepler:1". See also the \fB\-\-gpus\fR,
\fB\-\-gpus\-per\-socket\fR and \fB\-\-gpus\-per\-node\fR options.
This option requires an explicit task count, e.g. \-n, \-\-ntasks or "\-\-gpus=X
\-\-gpus\-per\-task=Y" rather than an ambiguous range of nodes with \-N, \-\-nodes.
This option will implicitly set \-\-tres\-bind=gres/gpu:per_task:<gpus_per_task>,
but that can be overridden with an explicit \-\-tres\-bind=gres/gpu
specification.
.br
.IP

.TP
\fB\-\-gres\fR=<\fIlist\fR>
Specifies a comma\-delimited list of generic consumable resources.
The format for each entry in the list is "name[[:type]:count]".
The \fIname\fR is the type of consumable resource (e.g. gpu).
The \fItype\fR is an optional classification for the resource (e.g. a100).
The \fIcount\fR is the number of those resources with a default value of 1.
The count can have a suffix of
"k" or "K" (multiple of 1024),
"m" or "M" (multiple of 1024 x 1024),
"g" or "G" (multiple of 1024 x 1024 x 1024),
"t" or "T" (multiple of 1024 x 1024 x 1024 x 1024),
"p" or "P" (multiple of 1024 x 1024 x 1024 x 1024 x 1024).
The specified resources will be allocated to the job on each node.
The available generic consumable resources is configurable by the system
administrator.
A list of available generic consumable resources will be printed and the
command will exit if the option argument is "help".
Examples of use include "\-\-gres=gpu:2", "\-\-gres=gpu:kepler:2", and
"\-\-gres=help".
.IP

.TP
\fB\-\-gres\-flags\fR=<\fItype\fR>
Specify generic resource task binding options.
.IP
.RS

.TP
.B multiple\-tasks\-per\-sharing
Negate \fBone\-task\-per\-sharing\fR. This is useful if it is set by default in
\fBSelectTypeParameters\fR.
.IP

.TP
.B disable\-binding
Negate \fBenforce\-binding\fR. This is useful if it is set by default in
\fBSelectTypeParameters\fR.
.IP

.TP
.B enforce\-binding
The only CPUs available to the job will be those bound to the selected
GRES (i.e. the CPUs identified in the gres.conf file will be strictly
enforced). This option may result in delayed initiation of a job.
For example a job requiring two GPUs and one CPU will be delayed until both
GPUs on a single socket are available rather than using GPUs bound to separate
sockets, however, the application performance may be improved due to improved
communication speed.
Requires the node to be configured with more than one socket and resource
filtering will be performed on a per\-socket basis.
.br
\fBNOTE\fR: This option can be set by default in \fBSelectTypeParameters\fR.
.br
\fBNOTE\fR: This option is specific to \fBSelectType=cons_tres\fR.
.IP

.TP
.B one\-task\-per\-sharing
Do not allow different tasks in to be allocated shared gres from the same
sharing gres.
.br
\fBNOTE\fR: This flag is only enforced if shared gres are requested with
\-\-tres\-per\-task.
.br
\fBNOTE\fR: This option can be set by default with
\fBSelectTypeParameters=ONE_TASK_PER_SHARING_GRES\fR.
.br
\fBNOTE\fR: This option is specific to
\fBSelectTypeParameters=MULTIPLE_SHARING_GRES_PJ\fR
.RE
.IP

.TP
\fB\-h\fR, \fB\-\-help\fR
Display help information and exit.
.IP

.TP
\fB\-\-hint\fR=<\fItype\fR>
Bind tasks according to application hints.
.br
\fBNOTE\fR: This option implies specific values for certain related options,
which prevents its use with any user\-specified values for
\fB\-\-ntasks\-per\-core\fR, \fB\-\-threads\-per\-core\fR or \fB\-B\fR.
These conflicting options will override \fB\-\-hint\fR when specified as
command line arguments. If a conflicting option is specified as an environment
variable, \-\-hint as a command line argument will take precedence.
.IP
.RS
.TP
.B compute_bound
Select settings for compute bound applications:
use all cores in each socket, one thread per core.
.IP

.TP
.B memory_bound
Select settings for memory bound applications:
use only one core in each socket, one thread per core.
.IP

.TP
.B multithread
Use extra threads with in\-core multi\-threading
which can benefit communication intensive applications.
Only supported with the task/affinity plugin.
.IP

.TP
.B nomultithread
Don't use extra threads with in\-core multi\-threading;
restricts tasks to one thread per core.
Only supported with the task/affinity plugin.
.IP

.TP
.B help
show this help message
.RE
.IP

.TP
\fB\-H, \-\-hold\fR
Specify the job is to be submitted in a held state (priority of zero).
A held job can now be released using scontrol to reset its priority
(e.g. "\fIscontrol release <job_id>\fR").
.IP

.TP
\fB\-I\fR, \fB\-\-immediate\fR[=<\fIseconds\fR>]
exit if resources are not available within the
time period specified.
If no argument is given (seconds defaults to 1), resources must be available
immediately for the request to succeed. If \fBdefer\fR is configured in
\fBSchedulerParameters\fR and seconds=1 the allocation request will fail
immediately; \fBdefer\fR conflicts and takes precedence over this option.
By default, \fB\-\-immediate\fR is off, and the command
will block until resources become available. Since this option's
argument is optional, for proper parsing the single letter option must
be followed immediately with the value and not include a space between
them. For example "\-I60" and not "\-I 60".
.IP

.TP
\fB\-J\fR, \fB\-\-job\-name\fR=<\fIjobname\fR>
Specify a name for the job allocation. The specified name will appear along with
the job id number when querying running jobs on the system. The default job
name is the name of the "command" specified on the command line.
.IP

.TP
\fB\-K\fR, \fB\-\-kill\-command\fR[=\fIsignal\fR]
salloc always runs a user\-specified command once the allocation is
granted. salloc will wait indefinitely for that command to exit.
If you specify the \fB\-\-kill\-command\fR option salloc will send a signal to
your command any time that the Slurm controller tells salloc that its job
allocation has been revoked. The job allocation can be revoked for a
couple of reasons: someone used \fBscancel\fR to revoke the allocation,
or the allocation reached its time limit. If you do not specify a signal
name or number and Slurm is configured to signal the spawned command at job
termination, the default signal is SIGHUP for interactive and SIGTERM for
non\-interactive sessions. Since this option's argument is optional,
for proper parsing the single letter option must be followed
immediately with the value and not include a space between them. For
example "\-K1" and not "\-K 1".
.IP

.TP
\fB\-L\fR, \fB\-\-licenses\fR=<\fIlicense\fR>[@\fIdb\fR][:\fIcount\fR][,\fIlicense\fR[@\fIdb\fR][:\fIcount\fR]...]
Specification of licenses (or other resources available on all
nodes of the cluster) which must be allocated to this job.
License names can be followed by a colon and count
(the default count is one).
Multiple license names should be comma separated (e.g.
"\-\-licenses=foo:4,bar").

\fBNOTE\fR: When submitting heterogeneous jobs, license requests
may only be made on the first component job.
For example "salloc \-L ansys:2 :".
.IP

.TP
\fB\-\-mail\-type\fR=<\fItype\fR>
Notify user by email when certain event types occur.
Valid \fItype\fR values are NONE, BEGIN, END, FAIL, REQUEUE, ALL (equivalent to
BEGIN, END, FAIL, INVALID_DEPEND, REQUEUE, and STAGE_OUT), INVALID_DEPEND
(dependency never satisfied), STAGE_OUT (burst buffer stage out and teardown
completed), TIME_LIMIT, TIME_LIMIT_90 (reached 90 percent of time limit),
TIME_LIMIT_80 (reached 80 percent of time limit), and TIME_LIMIT_50 (reached 50
percent of time limit).
Multiple \fItype\fR values may be specified in a comma separated list.
NONE will suppress all event notifications, ignoring any other values specified.
By default no email notifications are sent.
The user to be notified is indicated with \fB\-\-mail\-user\fR.
.IP

.TP
\fB\-\-mail\-user\fR=<\fIuser\fR>
User to receive email notification of state changes as defined by
\fB\-\-mail\-type\fR. This may be a full email address or a username. If a
username is specified, the value from \fBMailDomain\fR in slurm.conf will be
appended to create an email address.
The default value is the submitting user.
.IP

.TP
\fB\-\-mcs\-label\fR=<\fImcs\fR>
Used only when the mcs/group plugin is enabled.
This parameter is a group among the groups of the user.
Default value is calculated by the Plugin mcs if it's enabled.
.IP

.TP
\fB\-\-mem\fR=<\fIsize\fR>[\fIunits\fR]
Specify the real memory required per node.
Default units are megabytes.
Different units can be specified using the suffix [K|M|G|T].
Default value is \fBDefMemPerNode\fR and the maximum value is
\fBMaxMemPerNode\fR. If configured, both of parameters can be
seen using the \fBscontrol show config\fR command.
This parameter would generally be used if whole nodes
are allocated to jobs (\fBSelectType=select/linear\fR).
Also see \fB\-\-mem\-per\-cpu\fR and \fB\-\-mem\-per\-gpu\fR.
The \fB\-\-mem\fR, \fB\-\-mem\-per\-cpu\fR and \fB\-\-mem\-per\-gpu\fR
options are mutually exclusive. If \fB\-\-mem\fR, \fB\-\-mem\-per\-cpu\fR or
\fB\-\-mem\-per\-gpu\fR are specified as command line arguments, then they will
take precedence over the environment.

\fBNOTE\fR: A memory size specification of zero is treated as a special case and
grants the job access to all of the memory on each node.

\fBNOTE\fR: Memory requests will not be strictly enforced unless Slurm is
configured to use an enforcement mechanism. See \fBConstrainRAMSpace\fR in
the \fBcgroup.conf\fR(5) man page and \fBOverMemoryKill\fR in the
\fBslurm.conf\fR(5) man page for more details.
.IP

.TP
\fB\-\-mem\-bind\fR=[{quiet|verbose},]<\fItype\fR>
Bind tasks to memory. Used only when the task/affinity plugin is enabled
and the NUMA memory functions are available.
\fBNote that the resolution of CPU and memory binding
may differ on some architectures.\fR For example, CPU binding may be performed
at the level of the cores within a processor while memory binding will
be performed at the level of nodes, where the definition of "nodes"
may differ from system to system.
By default no memory binding is performed; any task using any CPU can use
any memory. This option is typically used to ensure that each task is bound to
the memory closest to its assigned CPU. \fBThe use of any type other than
"none" or "local" is not recommended.\fR

\fBNOTE\fR: To have Slurm always report on the selected memory binding for
all commands executed in a shell, you can enable verbose mode by
setting the SLURM_MEM_BIND environment variable value to "verbose".

The following informational environment variables are set when
\fB\-\-mem\-bind\fR is in use:

.nf
	SLURM_MEM_BIND_LIST
	SLURM_MEM_BIND_PREFER
	SLURM_MEM_BIND_SORT
	SLURM_MEM_BIND_TYPE
	SLURM_MEM_BIND_VERBOSE
.fi

See the \fBENVIRONMENT VARIABLES\fR section for a more detailed description
of the individual SLURM_MEM_BIND* variables.

Supported options include:
.IP
.RS
.TP
.B help
show this help message
.IP

.TP
.B local
Use memory local to the processor in use
.IP

.TP
.B map_mem:<list>
Bind by setting memory masks on tasks (or ranks) as specified where <list> is
<numa_id_for_task_0>,<numa_id_for_task_1>,...
The mapping is specified for a node and identical mapping is applied to the
tasks on every node (i.e. the lowest task ID on each node is mapped to the
first ID specified in the list, etc.).
NUMA IDs are interpreted as decimal values unless they are preceded
with '0x' in which case they interpreted as hexadecimal values.
If the number of tasks (or ranks) exceeds the number of elements in this list,
elements in the list will be reused as needed starting from the beginning of
the list.
To simplify support for large task counts, the lists may follow a map with an
asterisk and repetition count.
For example "map_mem:0x0f*4,0xf0*4".
For predictable binding results, all CPUs for each node in the job should be
allocated to the job.
.IP

.TP
.B mask_mem:<list>
Bind by setting memory masks on tasks (or ranks) as specified where <list> is
<numa_mask_for_task_0>,<numa_mask_for_task_1>,...
The mapping is specified for a node and identical mapping is applied to the
tasks on every node (i.e. the lowest task ID on each node is mapped to the
first mask specified in the list, etc.).
NUMA masks are \fBalways\fR interpreted as hexadecimal values.
Note that masks must be preceded with a '0x' if they don't begin
with [0\-9] so they are seen as numerical values.
If the number of tasks (or ranks) exceeds the number of elements in this list,
elements in the list will be reused as needed starting from the beginning of
the list.
To simplify support for large task counts, the lists may follow a mask with an
asterisk and repetition count.
For example "mask_mem:0*4,1*4".
For predictable binding results, all CPUs for each node in the job should be
allocated to the job.
.IP

.TP
.B no[ne]
don't bind tasks to memory (default)
.IP

.TP
.B p[refer]
Prefer use of first specified NUMA node, but permit
 use of other available NUMA nodes.
.IP

.TP
.B q[uiet]
quietly bind before task runs (default)
.IP

.TP
.B rank
bind by task rank (not recommended)
.IP

.TP
.B sort
sort free cache pages (run zonesort on Intel KNL nodes)
.IP

.TP
.B v[erbose]
verbosely report binding before task runs
.RE
.IP

.TP
\fB\-\-mem\-per\-cpu\fR=<\fIsize\fR>[\fIunits\fR]
Minimum memory required per usable allocated CPU.
Default units are megabytes.
Different units can be specified using the suffix [K|M|G|T].
The default value is \fBDefMemPerCPU\fR and the maximum value is
\fBMaxMemPerCPU\fR (see exception below). If configured, both parameters can be
seen using the \fBscontrol show config\fR command.
Note that if the job's \fB\-\-mem\-per\-cpu\fR value exceeds the configured
\fBMaxMemPerCPU\fR, then the user's limit will be treated as a memory limit
per task; \fB\-\-mem\-per\-cpu\fR will be reduced to a value no larger than
\fBMaxMemPerCPU\fR; \fB\-\-cpus\-per\-task\fR will be set and the value of
\fB\-\-cpus\-per\-task\fR multiplied by the new \fB\-\-mem\-per\-cpu\fR
value will equal the original \fB\-\-mem\-per\-cpu\fR value specified by
the user.
This parameter would generally be used if individual processors
are allocated to jobs (\fBSelectType=select/cons_tres\fR).
If resources are allocated by core, socket, or whole nodes, then the number
of CPUs allocated to a job may be higher than the task count and the value
of \fB\-\-mem\-per\-cpu\fR should be adjusted accordingly.
Also see \fB\-\-mem\fR and \fB\-\-mem\-per\-gpu\fR.
The \fB\-\-mem\fR, \fB\-\-mem\-per\-cpu\fR and \fB\-\-mem\-per\-gpu\fR
options are mutually exclusive.

\fBNOTE\fR: If the final amount of memory requested by a job
can't be satisfied by any of the nodes configured in the
partition, the job will be rejected.
This could happen if \fB\-\-mem\-per\-cpu\fR is used with the
\fB\-\-exclusive\fR option for a job allocation and \fB\-\-mem\-per\-cpu\fR
times the number of CPUs on a node is greater than the total memory of that
node.

\fBNOTE\fR: This applies to \fBusable\fR allocated CPUs in a job allocation.
This is important when more than one thread per core is configured.
If a job requests \-\-threads\-per\-core with fewer threads on a core than
exist on the core (or \-\-hint=nomultithread which implies
\-\-threads\-per\-core=1), the job will be unable to use those extra threads on
the core and those threads will not be included in the memory per CPU
calculation. But if the job has access to all threads on the core, those threads
will be included in the memory per CPU calculation even if the job did not
explicitly request those threads.

In the following examples, each core has two threads.

In this first example, two tasks can run on separate hyperthreads
in the same core because \-\-threads\-per\-core is not used. The
third task uses both threads of the second core. The allocated
memory per cpu includes all threads:

.nf
.ft B
$ salloc \-n3 \-\-mem\-per\-cpu=100
salloc: Granted job allocation 17199
$ sacct \-j $SLURM_JOB_ID \-X \-o jobid%7,reqtres%35,alloctres%35
  JobID                             ReqTRES                           AllocTRES
\-\-\-\-\-\-\- \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\- \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-
  17199     billing=3,cpu=3,mem=300M,node=1     billing=4,cpu=4,mem=400M,node=1
.ft
.fi

In this second example, because of \-\-threads\-per\-core=1, each
task is allocated an entire core but is only able to use one
thread per core. Allocated CPUs includes all threads on each
core. However, allocated memory per cpu includes only the
usable thread in each core.

.nf
.ft B
$ salloc \-n3 \-\-mem\-per\-cpu=100 \-\-threads\-per\-core=1
salloc: Granted job allocation 17200
$ sacct \-j $SLURM_JOB_ID \-X \-o jobid%7,reqtres%35,alloctres%35
  JobID                             ReqTRES                           AllocTRES
\-\-\-\-\-\-\- \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\- \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-
  17200     billing=3,cpu=3,mem=300M,node=1     billing=6,cpu=6,mem=300M,node=1
.ft
.fi
.IP

.TP
\fB\-\-mem\-per\-gpu\fR=<\fIsize\fR>[\fIunits\fR]
Minimum memory required per allocated GPU.
Default units are megabytes.
Different units can be specified using the suffix [K|M|G|T].
Default value is \fBDefMemPerGPU\fR and is available on both a global and
per partition basis.
If configured, the parameters can be seen using the \fBscontrol show config\fR
and \fBscontrol show partition\fR commands.
Also see \fB\-\-mem\fR.
The \fB\-\-mem\fR, \fB\-\-mem\-per\-cpu\fR and \fB\-\-mem\-per\-gpu\fR
options are mutually exclusive.
.IP

.TP
\fB\-\-mincpus\fR=<\fIn\fR>
Specify a minimum number of logical cpus/processors per node.
.IP

.TP
\fB\-\-network\fR=<\fItype\fR>
Specify information pertaining to the switch or network.
The interpretation of \fItype\fR is system dependent.
This option is supported when running Slurm on a Cray natively. It is
used to request using Network Performance Counters.
Only one value per request is valid.
All options are case in\-sensitive.
In this configuration supported values include:
.IP
.RS
.TP 6
\fBsystem\fR
Use the system\-wide network performance counters. Only nodes requested
will be marked in use for the job allocation. If the job does not
fill up the entire system the rest of the nodes are not
able to be used by other jobs using NPC, if idle their state will appear as
PerfCnts. These nodes are still available for other jobs not using NPC.
.IP

.TP
\fBblade\fR
Use the blade network performance counters. Only nodes requested
will be marked in use for the job allocation. If the job does not
fill up the entire blade(s) allocated to the job those blade(s) are not
able to be used by other jobs using NPC, if idle their state will appear as
PerfCnts. These nodes are still available for other jobs not using NPC.
.RE
.IP

In all cases the job allocation request \fBmust specify the
\-\-exclusive option\fR. Otherwise the request will be denied.

Also with any of these options steps are not allowed to share blades,
so resources would remain idle inside an allocation if the step
running on a blade does not take up all the nodes on the blade.

The \fBnetwork\fR option is also available on systems with HPE Slingshot
networks. It can be used to request a job VNI (to be used for communication
between job steps in a job). It also can be used to override the default
network resources allocated for the job step. Multiple values may be specified
in a comma-separated list.
.IP
.RS
.TP 6
\fBtcs\fR=<\fIclass1\fR>[:<\fIclass2\fR>]...
Set of traffic classes to configure for applications.
Supported traffic classes are DEDICATED_ACCESS, LOW_LATENCY, BULK_DATA, and
BEST_EFFORT. The traffic classes may also be specified as TC_DEDICATED_ACCESS,
TC_LOW_LATENCY, TC_BULK_DATA, and TC_BEST_EFFORT.
.IP

.TP
\fBno_vni\fR
Don't allocate any VNIs for this job (even if multi-node).
.IP

.TP
\fBjob_vni\fR
Allocate a job VNI for this job.
.IP

.TP
\fBsingle_node_vni\fR
Allocate a job VNI for this job, even if it is a single-node job.
.IP

.TP
\fBadjust_limits\fR
If set, slurmd will set an upper bound on network resource reservations
by taking the per-NIC maximum resource quantity and subtracting the
reserved or used values (whichever is higher) for any system network services;
this is the default.
.IP

.TP
\fBno_adjust_limits\fR
If set, slurmd will calculate network resource reservations
based only upon the per-resource configuration default and number of tasks
in the application; it will not set an upper bound on those reservation
requests based on resource usage of already-existing system network services.
Setting this will mean more application launches could fail based
on network resource exhaustion, but if the application
absolutely needs a certain amount of resources to function, this option
will ensure that.
.IP

.TP
\fBdisable_rdzv_get\fR
Disable rendezvous gets in Slingshot NICs, which can improve performance for
certain applications.
.IP

.TP
\fBdef_<rsrc>\fR=<\fIval\fR>
Per-CPU reserved allocation for this resource.
.IP

.TP
\fBres_<rsrc>\fR=<\fIval\fR>
Per-node reserved allocation for this resource.
If set, overrides the per-CPU allocation.
.IP

.TP
\fBmax_<rsrc>\fR=<\fIval\fR>
Maximum per-node limit for this resource.
.IP

.TP
\fBdepth\fR=<\fIdepth\fR>
Multiplier for per-CPU resource allocation.
Default is the number of reserved CPUs on the node.
.RE
.IP

The resources that may be requested are:
.IP
.RS
.TP 6
\fBtxqs\fR
Transmit command queues. The default is 2 per-CPU, maximum 1024 per-node.
.IP

.TP
\fBtgqs\fR
Target command queues. The default is 1 per-CPU, maximum 512 per-node.
.IP

.TP
\fBeqs\fR
Event queues. The default is 2 per-CPU, maximum 2047 per-node.
.IP

.TP
\fBcts\fR
Counters. The default is 1 per-CPU, maximum 2047 per-node.
.IP

.TP
\fBtles\fR
Trigger list entries. The default is 1 per-CPU, maximum 2048 per-node.
.IP

.TP
\fBptes\fR
Portable table entries. The default is 6 per-CPU, maximum 2048 per-node.
.IP

.TP
\fBles\fR
List entries. The default is 16 per-CPU, maximum 16384 per-node.
.IP

.TP
\fBacs\fR
Addressing contexts. The default is 4 per-CPU, maximum 1022 per-node.
.RE
.IP

.IP

.TP
\fB\-\-nice\fR[=\fIadjustment\fR]
Run the job with an adjusted scheduling priority within Slurm. With no
adjustment value the scheduling priority is decreased by 100. A negative nice
value increases the priority, otherwise decreases it. The adjustment range is
+/\- 2147483645. Only privileged users can specify a negative adjustment.
.IP

.TP
\fB\-\-no\-bell\fR
Silence salloc's use of the terminal bell. Also see the option \fB\-\-bell\fR.
.IP

.TP
\fB\-k\fR, \fB\-\-no\-kill\fR[=off]
Do not automatically terminate a job if one of the nodes it has been
allocated fails. The user will assume the responsibilities for fault\-tolerance
should a node fail.
The job allocation will not be revoked so the user may launch new
job steps on the remaining nodes in their allocation.
This option does not set the \fBSLURM_NO_KILL\fR environment variable.
Therefore, when a node fails, steps running on that node will be killed unless
the \fBSLURM_NO_KILL\fR environment variable was explicitly set or srun calls
within the job allocation explicitly requested \-\-no\-kill.

Specify an optional argument of "off" to disable the effect of the
\fBSALLOC_NO_KILL\fR environment variable.

By default Slurm terminates the entire job allocation if any node fails in its
range of allocated nodes.
.IP

.TP
\fB\-\-no\-shell\fR
immediately exit after allocating resources, without running a
command. However, the Slurm job will still be created and will remain
active and will own the allocated resources as long as it is active.
You will have a Slurm job id with no associated processes or
tasks. You can submit \fBsrun\fR commands against this resource allocation,
if you specify the \fB\-\-jobid=\fR option with the job id of this Slurm job.
Or, this can be used to temporarily reserve a set of resources so that
other jobs cannot use them for some period of time. (Note that the
Slurm job is subject to the normal constraints on jobs, including time
limits, so that eventually the job will terminate and the resources
will be freed, or you can terminate the job manually using the
\fBscancel\fR command.)
.IP

.TP
\fB\-F\fR, \fB\-\-nodefile\fR=<\fInode_file\fR>
Much like \fB\-\-nodelist\fR, but the list is contained in a file of name
\fInode file\fR. The node names of the list may also span multiple lines
in the file. Duplicate node names in the file will be ignored.
The order of the node names in the list is not important; the node names
will be sorted by Slurm.
.IP

.TP
\fB\-w\fR, \fB\-\-nodelist\fR=<\fInode_name_list\fR>
Request a specific list of hosts.
The job will contain \fIall\fR of these hosts and possibly additional hosts
as needed to satisfy resource requirements.
The list may be specified as a comma\-separated list of hosts, a range of hosts
(host[1\-5,7,...] for example), or a filename.
The host list will be assumed to be a filename if it contains a "/" character.
If you specify a minimum node or processor count larger than can be satisfied
by the supplied host list, additional resources will be allocated on other
nodes as needed.
Duplicate node names in the list will be ignored.
The order of the node names in the list is not important; the node names
will be sorted by Slurm.
.IP

.TP
\fB\-N\fR, \fB\-\-nodes\fR=<\fIminnodes\fR>[\-\fImaxnodes\fR]|<\fIsize_string\fR>
Request that a minimum of \fIminnodes\fR nodes be allocated to this job.
A maximum node count may also be specified with \fImaxnodes\fR.
If only one number is specified, this is used as both the minimum and
maximum node count. Node count can be also specified as size_string.
The size_string specification identifies what nodes values should be used.
Multiple values may be specified using a comma separated list or
with a step function by suffix containing a colon and
number values with a "-" separator.
For example, "--nodes=1-15:4" is equivalent to "--nodes=1,5,9,13".
The partition's node limits supersede those of the job.
If a job's node limits are outside of the range permitted for its
associated partition, the job will be left in a PENDING state.
This permits possible execution at a later time, when the partition
limit is changed.
If a job node limit exceeds the number of nodes configured in the
partition, the job will be rejected.
Note that the environment
variable \fBSLURM_JOB_NUM_NODES\fR will be set to the count of nodes actually
allocated to the job. See the \fBENVIRONMENT VARIABLES \fR section
for more information. If \fB\-N\fR is not specified, the default
behavior is to allocate enough nodes to satisfy the requested resources as
expressed by per\-job specification options, e.g. \fB\-n\fR, \fB\-c\fR and
\fB--gpus\fR.
The job will be allocated as many nodes as possible within the range specified
and without delaying the initiation of the job.
The node count specification may include a numeric value followed by a suffix
of "k" (multiplies numeric value by 1,024) or "m" (multiplies numeric value by
1,048,576).

\fBNOTE\fR: This option cannot be used in with arbitrary distribution.
.IP

.TP
\fB\-n\fR, \fB\-\-ntasks\fR=<\fInumber\fR>
salloc does not launch tasks, it requests an allocation of resources and
executed some command. This option advises the Slurm controller that job
steps run within this allocation will launch a maximum of \fInumber\fR
tasks and sufficient resources are allocated to accomplish this.
The default is one task per node, but note
that the \fB\-\-cpus\-per\-task\fR option will change this default.
.IP

.TP
\fB\-\-ntasks\-per\-core\fR=<\fIntasks\fR>
Request the maximum \fIntasks\fR be invoked on each core.
Meant to be used with the \fB\-\-ntasks\fR option.
Related to \fB\-\-ntasks\-per\-node\fR except at the core level
instead of the node level. This option will be inhertited by srun.
Slurm may allocate more cpus than what was requested in order to respect this
option.
.br
\fBNOTE\fR: This option is not supported when using
\fISelectType=select/linear\fR. This value can not be greater than
\fB\-\-threads\-per\-core\fR.
.IP

.TP
\fB\-\-ntasks\-per\-gpu\fR=<\fIntasks\fR>
Request that there are \fIntasks\fR tasks invoked for every GPU.
This option can work in two ways: 1) either specify \fB\-\-ntasks\fR in
addition, in which case a type\-less GPU specification will be automatically
determined to satisfy \fB\-\-ntasks\-per\-gpu\fR, or 2) specify the GPUs wanted
(e.g. via \fB\-\-gpus\fR or \fB\-\-gres\fR) without specifying \fB\-\-ntasks\fR,
and the total task count will be automatically determined.
The number of CPUs needed will be automatically increased if necessary to allow
for any calculated task count.
This option will implicitly set \fB\-\-tres\-bind=gres/gpu:single:<ntasks>\fR,
but that can be overridden with an explicit \fB\-\-tres\-bind=gres/gpu\fR
specification.
This option is not compatible with a node range
(i.e. \-N<\fIminnodes\fR\-\fImaxnodes\fR>).
This option is not compatible with \fB\-\-gpus\-per\-task\fR,
\fB\-\-gpus\-per\-socket\fR, or \fB\-\-ntasks\-per\-node\fR.
This option is not supported unless \fISelectType=cons_tres\fR is
configured (either directly or indirectly on Cray systems).
.IP

.TP
\fB\-\-ntasks\-per\-node\fR=<\fIntasks\fR>
Request that \fIntasks\fR be invoked on each node.
If used with the \fB\-\-ntasks\fR option, the \fB\-\-ntasks\fR option will take
precedence and the \fB\-\-ntasks\-per\-node\fR will be treated as a
\fImaximum\fR count of tasks per node.
Meant to be used with the \fB\-\-nodes\fR option.
This is related to \fB\-\-cpus\-per\-task\fR=\fIncpus\fR,
but does not require knowledge of the actual number of cpus on
each node. In some cases, it is more convenient to be able to
request that no more than a specific number of tasks be invoked
on each node. Examples of this include submitting
a hybrid MPI/OpenMP app where only one MPI "task/rank" should be
assigned to each node while allowing the OpenMP portion to utilize
all of the parallelism present in the node, or submitting a single
setup/cleanup/monitoring job to each node of a pre\-existing
allocation as one step in a larger job script.
.IP

.TP
\fB\-\-ntasks\-per\-socket\fR=<\fIntasks\fR>
Request the maximum \fIntasks\fR be invoked on each socket.
Meant to be used with the \fB\-\-ntasks\fR option.
Related to \fB\-\-ntasks\-per\-node\fR except at the socket level
instead of the node level.
\fBNOTE\fR: This option is not supported when using
\fISelectType=select/linear\fR.
.IP

.TP
\fB\-\-oom\-kill\-step\fR[={0|1}]
Whether to kill the entire step if an OOM event is detected in any task of a
step. This overwrites the "OOMKillStep" setting in TaskPluginParam from
slurm.conf. When unset it will use the setting in slurm.conf. When set, a value
of "0" will disable killing the entire step, while a value of "1" will enable
it. This applies to the entire allocation except for the external step.
Default is "1" (enabled) when the option is found with no value.
.IP

.TP
\fB\-O\fR, \fB\-\-overcommit\fR
Overcommit resources.

When applied to a job allocation (not including jobs requesting exclusive
access to the nodes) the resources are allocated as if only one task per
node is requested. This means that the requested number of cpus per task
(\fB\-c\fR, \fB\-\-cpus\-per\-task\fR) are allocated per node rather than
being multiplied by the number of tasks. Options used to specify the number
of tasks per node, socket, core, etc. are ignored.

When applied to job step allocations (the \fBsrun\fR command when executed
within an existing job allocation), this option can be used to launch more than
one task per CPU.
Normally, \fBsrun\fR will not allocate more than one process per CPU.
By specifying \fB\-\-overcommit\fR you are explicitly allowing more than one
process per CPU. However no more than \fBMAX_TASKS_PER_NODE\fR tasks are
permitted to execute per node. \fBNOTE\fR: \fBMAX_TASKS_PER_NODE\fR is
defined in the file \fIslurm.h\fR and is not a variable, it is set at
Slurm build time.
.IP

.TP
\fB\-s\fR, \fB\-\-oversubscribe\fR
The job allocation can over\-subscribe resources with other running jobs.
The resources to be over\-subscribed can be nodes, sockets, cores, and/or
hyperthreads depending upon configuration.
The default over\-subscribe behavior depends on system configuration and the
partition's \fBOverSubscribe\fR option takes precedence over the job's option.
This option may result in the allocation being granted sooner than if the
\fB\-\-oversubscribe\fR option was not set and allow higher system utilization,
but application performance will likely suffer due to competition for resources.
Also see the \fB\-\-exclusive\fR option.

\fBNOTE\fR: This option is mutually exclusive with \fB\-\-exclusive\fR.
.IP

.TP
\fB\-p\fR, \fB\-\-partition\fR=<\fIpartition_names\fR>
Request a specific partition for the resource allocation. If not specified,
the default behavior is to allow the slurm controller to select the default
partition as designated by the system administrator. If the job can use more
than one partition, specify their names in a comma separate list and the one
offering earliest initiation will be used with no regard given to the partition
name ordering (although higher priority partitions will be considered first).
When the job is initiated, the name of the partition used will be placed first
in the job record partition string.
.IP

.TP
\fB\-\-prefer\fR=<\fIlist\fR>
Nodes can have \fBfeatures\fR assigned to them by the Slurm administrator.
Users can specify which of these \fBfeatures\fR are desired but not required by
their job using the prefer option.
This option operates independently from \fB\-\-constraint\fR and will override
whatever is set there if possible.
When scheduling, the features in \fB\-\-prefer\fR are tried first. If a node set
isn't available with those features then \fB\-\-constraint\fR is attempted.
See \fB\-\-constraint\fR for more information, this option behaves the same
way.

.TP
\fB\-\-priority\fR=<\fIvalue\fR>
Request a specific job priority.
May be subject to configuration specific constraints.
\fIvalue\fR should either be a numeric value or "TOP" (for highest possible value).
Only Slurm operators and administrators can set the priority of a job.
.IP

.TP
\fB\-\-profile\fR={all|none|<\fItype\fR>[,<\fItype\fR>...]}
Enables detailed data collection by the acct_gather_profile plugin.
Detailed data are typically time\-series that are stored in an HDF5 file for
the job or an InfluxDB database depending on the configured plugin.
.IP
.RS
.TP 10
\fBAll\fR
All data types are collected. (Cannot be combined with other values.)
.IP

.TP
\fBNone\fR
No data types are collected. This is the default.
 (Cannot be combined with other values.)
.IP
.RE

Valid \fItype\fR values are:
.IP
.RS
.TP
\fBEnergy\fR
Energy data is collected.
.IP

.TP
\fBTask\fR
Task (I/O, Memory, ...) data is collected.
.IP

.TP
\fBLustre\fR
Lustre data is collected.
.IP

.TP
\fBNetwork\fR
Network (InfiniBand) data is collected.
.RE
.IP

.TP
\fB\-q\fR, \fB\-\-qos\fR=<\fIqos\fR>
Request a quality of service for the job, or comma separated list of QOS.
If requesting a list it will be ordered based on the priority of the QOS given
with the first being the highest priority.
QOS values can be defined
for each user/cluster/account association in the Slurm database.
Users will be limited to their association's defined set of qos's when
the Slurm configuration parameter, AccountingStorageEnforce, includes
"qos" in its definition.
.IP

.TP
\fB\-Q\fR, \fB\-\-quiet\fR
Suppress informational messages from salloc. Errors will still be displayed.
.IP

.TP
\fB\-\-reboot\fR
Force the allocated nodes to reboot before starting the job.
This is only supported with some system configurations and will otherwise be
silently ignored. Only root, \fISlurmUser\fR or admins can reboot nodes.
.IP

.TP
\fB\-\-reservation\fR=<\fIreservation_names\fR>
Allocate resources for the job from the named reservation. If the job can use
more than one reservation, specify their names in a comma separate list and the
one offering earliest initiation. Each reservation will be considered in the
order it was requested.
All reservations will be listed in scontrol/squeue through the life of the job.
In accounting the first reservation will be seen and after the job starts the
reservation used will replace it.
.IP

.TP
\fB\-\-resv\-ports\fR[=\fIcount\fR]
Reserve communication ports for this job. Users can specify the number
of port they want to reserve. The parameter MpiParams=ports=12000\-12999
must be specified in \fIslurm.conf\fR. If the number of reserved ports is zero
then no ports are reserved. Used for native Cray's PMI only.
This option can only be used if the slurmstepd step management is enabled.
This option applies to job allocations. See \fB\-\-stepmgr\fR.
.IP

.TP
\fB\-\-segment\fR=<\fIsegment_size\fR>
When a block topology is used, this defines the size of the segments that
will be used to create the job allocation.
No requirement would be placed on all segments for a job needing to
be placed within the same higher-level block.

\fBNOTE\fR: The segment size must always be evenly divisible by
the requested node count.

\fBNOTE\fR: The segment size must be less than or equal to
the planning base block size. E.g., for a system with 30 nodes as the
planning base block size, "--segment 40" would be invalid
.IP

.TP
\fB\-\-signal\fR=[R:]<\fIsig_num\fR>[@\fIsig_time\fR]
When a job is within \fIsig_time\fR seconds of its end time,
send it the signal \fIsig_num\fR.
Due to the resolution of event handling by Slurm, the signal may
be sent up to 60 seconds earlier than specified.
\fIsig_num\fR may either be a signal number or name (e.g. "10" or "USR1").
\fIsig_time\fR must have an integer value between 0 and 65535.
By default, no signal is sent before the job's end time.
If a \fIsig_num\fR is specified without any \fIsig_time\fR,
the default time will be 60 seconds.
Use the "R:" option to allow this job to overlap with a reservation with
MaxStartDelay set. If the "R:" option is used, preemption must be enabled on the
system, and if the job is preempted it will be requeued if allowed otherwise the
job will be canceled.
To have the signal sent at preemption time see the \fBsend_user_signal\fR
\fBPreemptParameter\fR.
.IP

.TP
\fB\-\-sockets\-per\-node\fR=<\fIsockets\fR>
Restrict node selection to nodes with at least the specified number of
sockets. See additional information under \fB\-B\fR option above when
task/affinity plugin is enabled.
.br
\fBNOTE\fR: This option may implicitly set the number of tasks (if \fB\-n\fR
was not specified) as one task per requested thread.
.IP

.TP
\fB\-\-spread\-job\fR
Spread the job allocation over as many nodes as possible and attempt to
evenly distribute tasks across the allocated nodes.
This option disables the topology/tree plugin.
.IP

.TP
\fB\-\-stepmgr\fR
Enable slurmstepd step management per\-job if it isn't enabled system wide.
This enables job steps to be managed by a single extern slurmstepd associated
with the job to manage steps. This is beneficial for jobs that submit many
steps inside their allocations. \fBPrologFlags=contain\fR must be set.
.IP

.TP
\fB\-\-switches\fR=<\fIcount\fR>[@\fImax\-time\fR]
When a tree topology is used, this defines the maximum count of leaf switches
desired for the job allocation and optionally the maximum time to wait
for that number of switches. If Slurm finds an allocation containing more
switches than the count specified, the job remains pending until it either finds
an allocation with desired switch count or the time limit expires.
It there is no switch count limit, there is no delay in starting the job.
Acceptable time formats include "minutes", "minutes:seconds",
"hours:minutes:seconds", "days\-hours", "days\-hours:minutes" and
"days\-hours:minutes:seconds".
The job's maximum time delay may be limited by the system administrator using
the \fBSchedulerParameters\fR configuration parameter with the
\fBmax_switch_wait\fR parameter option.
On a dragonfly network the only switch count supported is 1 since communication
performance will be highest when a job is allocate resources on one leaf switch
or more than 2 leaf switches.
The default max\-time is the max_switch_wait SchedulerParameters.
.IP

.TP
\fB\-\-thread\-spec\fR=<\fInum\fR>
Count of specialized threads per node reserved by the job for system operations
and not used by the application. The application will not use these threads,
but will be charged for their allocation.
This option can not be used with the \fB\-\-core\-spec\fR option.

\fBNOTE\fR: Explicitly setting a job's specialized thread value implicitly sets
its --exclusive option, reserving entire nodes for the job.
.IP

.TP
\fB\-\-threads\-per\-core\fR=<\fIthreads\fR>
Restrict node selection to nodes with at least the specified number of
threads per core. In task layout, use the specified maximum number of threads
per core. \fBNOTE\fR: "Threads" refers to the number of processing units on
each core rather than the number of application tasks to be launched per core.
See additional information under \fB\-B\fR option above when task/affinity
plugin is enabled.
.br
\fBNOTE\fR: This option may implicitly set the number of tasks (if \fB\-n\fR
was not specified) as one task per requested thread.
.IP

.TP
\fB\-t\fR, \fB\-\-time\fR=<\fItime\fR>
Set a limit on the total run time of the job allocation. If the
requested time limit exceeds the partition's time limit, the job will
be left in a PENDING state (possibly indefinitely). The default time
limit is the partition's default time limit. When the time limit is reached,
each task in each job step is sent SIGTERM followed by SIGKILL. The
interval between signals is specified by the Slurm configuration
parameter \fBKillWait\fR. The \fBOverTimeLimit\fR configuration parameter may
permit the job to run longer than scheduled. Time resolution is one minute
and second values are rounded up to the next minute.

A time limit of zero requests that no time limit be imposed. Acceptable time
formats include "minutes", "minutes:seconds", "hours:minutes:seconds",
"days\-hours", "days\-hours:minutes" and "days\-hours:minutes:seconds".
.IP

.TP
\fB\-\-time\-min\fR=<\fItime\fR>
Set a minimum time limit on the job allocation.
If specified, the job may have its \fB\-\-time\fR limit lowered to a value
no lower than \fB\-\-time\-min\fR if doing so permits the job to begin
execution earlier than otherwise possible.
The job's time limit will not be changed after the job is allocated resources.
This is performed by a backfill scheduling algorithm to allocate resources
otherwise reserved for higher priority jobs.
Acceptable time formats include "minutes", "minutes:seconds",
"hours:minutes:seconds", "days\-hours", "days\-hours:minutes" and
"days\-hours:minutes:seconds".
.IP

.TP
\fB\-\-tmp\fR=<\fIsize\fR>[\fIunits\fR]
Specify a minimum amount of temporary disk space per node.
Default units are megabytes.
Different units can be specified using the suffix [K|M|G|T].
.IP

.TP
\fB\-\-tres\-bind\fR=<\fItres\fR>:[verbose,]<\fItype\fR>[+<\fItres\fR>:
[verbose,]<\fItype\fR>...]
Specify a list of tres with their task binding options. Currently gres are the
only supported tres for this options. Specify gres as "gres/<gres_name>"
(e.g. gres/gpu)

Example: \-\-tres\-bind=gres/gpu:verbose,map:0,1,2,3+gres/nic:closest

By default, most tres are not bound to individual tasks

Supported binding \fItype\fR options for \fBgres\fR:
.IP
.RS
.TP 10
\fBclosest\fR
Bind each task to the gres(s) which are closest.
In a NUMA environment, each task may be bound to more than one gres (i.e.
all gres in that NUMA environment).
.IP

.TP
\fBmap:<list>\fR
Bind by setting gres masks on tasks (or ranks) as specified where <list> is
<gres_id_for_task_0>,<gres_id_for_task_1>,... gres IDs are interpreted as decimal
values. If the number of tasks (or ranks) exceeds the number of elements in this
list, elements in the list will be reused as needed starting from the beginning
of the list. To simplify support for large task counts, the lists may follow a
map with an asterisk and repetition count. For example "map:0*4,1*4".
If the task/cgroup plugin is used and ConstrainDevices is set in cgroup.conf,
then the gres IDs are zero\-based indexes relative to the gress allocated to the
job (e.g. the first gres is 0, even if the global ID is 3). Otherwise, the gres
IDs are global IDs, and all gres on each node in the job should be allocated for
predictable binding results.
.IP

.TP
\fBmask:<list>\fR
Bind by setting gres masks on tasks (or ranks) as specified where <list> is
<gres_mask_for_task_0>,<gres_mask_for_task_1>,... The mapping is specified for
a node and identical mapping is applied to the tasks on every node (i.e. the
lowest task ID on each node is mapped to the first mask specified in the list,
etc.). gres masks are always interpreted as hexadecimal values but can be
preceded with an optional '0x'. To simplify support for large task counts, the
lists may follow a map with an asterisk and repetition count.
For example "mask:0x0f*4,0xf0*4".
If the task/cgroup plugin is used and ConstrainDevices is set in cgroup.conf,
then the gres IDs are zero\-based indexes relative to the gres allocated to the
job (e.g. the first gres is 0, even if the global ID is 3). Otherwise, the gres
IDs are global IDs, and all gres on each node in the job should be allocated for
predictable binding results.
.IP

.TP
\fBnone\fR
Do not bind tasks to this gres (turns off implicit binding from
\-\-tres\-per\-task and \-\-gpus\-per\-task).
.IP

.TP
\fBper_task:<gres_per_task>\fR
Each task will be bound to the number of gres specified in
\fI<gres_per_task>\fR. Tasks are preferentially assigned gres with affinity to
cores in their allocation like in \fIclosest\fR, though they will
take any gres if they are unavailable. If no affinity exists, the first task
will be assigned the first x number of gres on the node etc.
Shared gres will prefer to bind one sharing device per task if possible.
.IP

.TP
\fBsingle:<tasks_per_gres>\fR
Like \fIclosest\fR, except that each task can only be bound to a
single gres, even when it can be bound to multiple gres that are equally close.
The gres to bind to is determined by \fI<tasks_per_gres>\fR, where the
first \fI<tasks_per_gres>\fR tasks are bound to the first gres available, the
second \fI<tasks_per_gres>\fR tasks are bound to the second gres available, etc.
This is basically a block distribution of tasks onto available gres, where the
available gres are determined by the socket affinity of the task and the socket
affinity of the gres as specified in gres.conf's \fICores\fR parameter.
.IP

\fBNOTE\fR: Shared gres binding is currently limited to per_task or none
.RE
.IP

.TP
\fB\-\-tres\-per\-task\fR=<\fIlist\fR>
Specifies a comma\-delimited list of trackable resources required for the job on
each task to be spawned in the job's resource allocation.
The format for each entry in the list is "trestype[/tresname]=count".
The \fItrestype\fR is the type of trackable resource requested (e.g. cpu, gres,
license, etc).
The \fItresname\fR is the name of the trackable resource, as can be seen with
\fIsacctmgr show tres\fR. This is required when it exists for tres types such
as gres, license, etc. (e.g. gpu, gpu:a100).
In order to request a license with this option, the license(s) must be defined
in the \fBAccountingStorageTRES\fR parameter of slurm.conf.
The \fIcount\fR is the number of those resources.
.br
The count can have a suffix of
.br
"k" or "K" (multiple of 1024),
.br
"m" or "M" (multiple of 1024 x 1024),
.br
"g" or "G" (multiple of 1024 x 1024 x 1024),
.br
"t" or "T" (multiple of 1024 x 1024 x 1024 x 1024),
.br
"p" or "P" (multiple of 1024 x 1024 x 1024 x 1024 x 1024).
.br
Examples:
.nf
\-\-tres\-per\-task=cpu=4
\-\-tres\-per\-task=cpu=8,license/ansys=1
\-\-tres\-per\-task=gres/gpu=1
\-\-tres\-per\-task=gres/gpu:a100=2
.fi
The specified resources will be allocated to the job on each node.
The available trackable resources are configurable by the system
administrator.
.br
\fBNOTE\fR: This option with gres/gpu or gres/shard will implicitly set
\-\-tres\-bind=per_task:(gpu or shard)<tres_per_task>; this can be overridden
with an explicit \-\-tres\-bind specification.
.br
\fBNOTE\fR: Invalid TRES for \-\-tres\-per\-task include
bb,billing,energy,fs,mem,node,pages,vmem.
.br
.IP

.TP
\fB\-\-usage\fR
Display brief help message and exit.
.IP

.TP
\fB\-\-use\-min\-nodes\fR
If a range of node counts is given, prefer the smaller count.
.IP

.TP
\fB\-v\fR, \fB\-\-verbose\fR
Increase the verbosity of salloc's informational messages. Multiple
'\fB\-v\fR's will further increase salloc's verbosity. By default only
errors will be displayed.
.IP

.TP
\fB\-V\fR, \fB\-\-version\fR
Display version information and exit.
.IP

.TP
\fB\-\-wait\-all\-nodes\fR=<\fIvalue\fR>
Controls when the execution of the command begins with respect to when nodes
are ready for use (i.e. booted).
By default, the salloc command will return as soon as the allocation is made.
This default can be altered using the \fBsalloc_wait_nodes\fR option to the
\fBSchedulerParameters\fR parameter in the slurm.conf file.
.IP
.RS
.TP 5
0
Begin execution as soon as allocation can be made.
Do not wait for all nodes to be ready for use (i.e. booted).
.IP

.TP
1
Do not begin execution until all nodes are ready for use.
.RE
.IP

.TP
\fB\-\-wckey\fR=<\fIwckey\fR>
Specify wckey to be used with job. If TrackWCKey=no (default) in the
slurm.conf this value is ignored.
.IP

.TP
\fB\-\-x11\fR[={all|first|last}]
Sets up X11 forwarding on "all", "first" or "last" node(s) of the allocation.
This option is only enabled if Slurm was compiled with X11 support and
PrologFlags=x11 is defined in the slurm.conf. Default is "all".
.IP

.SH "PERFORMANCE"
.PP
Executing \fBsalloc\fR sends a remote procedure call to \fBslurmctld\fR. If
enough calls from \fBsalloc\fR or other Slurm client commands that send remote
procedure calls to the \fBslurmctld\fR daemon come in at once, it can result in
a degradation of performance of the \fBslurmctld\fR daemon, possibly resulting
in a denial of service.
.PP
Do not run \fBsalloc\fR or other Slurm client commands that send remote
procedure calls to \fBslurmctld\fR from loops in shell scripts or other
programs. Ensure that programs limit calls to \fBsalloc\fR to the minimum
necessary for the information you are trying to gather.

.SH "INPUT ENVIRONMENT VARIABLES"
.PP
Upon startup, salloc will read and handle the options set in the following
environment variables. The majority of these variables are set the same way
the options are set, as defined above. For flag options that are defined to
expect no argument, the option can be enabled by setting the environment
variable without a value (empty or NULL string), the string 'yes', or a
non-zero number. Any other value for the environment variable will result in
the option not being set.
There are a couple exceptions to these rules that are noted below.
.br
\fBNOTE\fR: Command line options always override environment variables settings.

.TP 22
\fBSALLOC_ACCOUNT\fR
Same as \fB\-A, \-\-account\fR
.IP

.TP
\fBSALLOC_ACCTG_FREQ\fR
Same as \fB\-\-acctg\-freq\fR
.IP

.TP
\fBSALLOC_BELL\fR
Same as \fB\-\-bell\fR
.IP

.TP
\fBSALLOC_BURST_BUFFER\fR
Same as \fB\-\-bb\fR
.IP

.TP
\fBSALLOC_CLUSTERS\fR or \fBSLURM_CLUSTERS\fR
Same as \fB\-\-clusters\fR
.IP

.TP
\fBSALLOC_CONSTRAINT\fR
Same as \fB\-C\fR, \fB\-\-constraint\fR
.IP

.TP
\fBSALLOC_CONTAINER\fR
Same as \-\-container\fR.
.IP

.TP
\fBSALLOC_CONTAINER_ID\fR
Same as \-\-container-id\fR.
.IP

.TP
\fBSALLOC_CORE_SPEC\fR
Same as \fB\-\-core\-spec\fR
.IP

.TP
\fBSALLOC_CPUS_PER_GPU\fR
Same as \fB\-\-cpus\-per\-gpu\fR
.IP

.TP
\fBSALLOC_DEBUG\fR
Same as \fB\-v, \-\-verbose\fR, when set to 1, when set to 2 gives -vv, etc.
.IP

.TP
\fBSALLOC_DELAY_BOOT\fR
Same as \fB\-\-delay\-boot\fR
.IP

.TP
\fBSALLOC_EXCLUSIVE\fR
Same as \fB\-\-exclusive\fR
.IP

.TP
\fBSALLOC_GPU_BIND\fR
Same as \fB\-\-gpu\-bind\fR
.IP

.TP
\fBSALLOC_GPU_FREQ\fR
Same as \fB\-\-gpu\-freq\fR
.IP

.TP
\fBSALLOC_GPUS\fR
Same as \fB\-G, \-\-gpus\fR
.IP

.TP
\fBSALLOC_GPUS_PER_NODE\fR
Same as \fB\-\-gpus\-per\-node\fR
.IP

.TP
\fBSALLOC_GPUS_PER_TASK\fR
Same as \fB\-\-gpus\-per\-task\fR
.IP

.TP
\fBSALLOC_GRES\fR
Same as \fB\-\-gres\fR
.IP

.TP
\fBSALLOC_GRES_FLAGS\fR
Same as \fB\-\-gres\-flags\fR
.IP

.TP
\fBSALLOC_HINT\fR or \fBSLURM_HINT\fR
Same as \fB\-\-hint\fR
.IP

.TP
\fBSALLOC_IMMEDIATE\fR
Same as \fB\-I, \-\-immediate\fR
.IP

.TP
\fBSALLOC_KILL_CMD\fR
Same as \fB\-K\fR, \fB\-\-kill\-command\fR
.IP

.TP
\fBSALLOC_MEM_BIND\fR
Same as \fB\-\-mem\-bind\fR
.IP

.TP
\fBSALLOC_MEM_PER_CPU\fR
Same as \fB\-\-mem\-per\-cpu\fR
.IP

.TP
\fBSALLOC_MEM_PER_GPU\fR
Same as \fB\-\-mem\-per\-gpu\fR
.IP

.TP
\fBSALLOC_MEM_PER_NODE\fR
Same as \fB\-\-mem\fR
.IP

.TP
\fBSALLOC_NETWORK\fR
Same as \fB\-\-network\fR
.IP

.TP
\fBSALLOC_NO_BELL\fR
Same as \fB\-\-no\-bell\fR
.IP

.TP
\fBSALLOC_NO_KILL\fR
Same as \fB\-k\fR, \fB\-\-no\-kill\fR
.IP

.TP
\fBSALLOC_OVERCOMMIT\fR
Same as \fB\-O, \-\-overcommit\fR
.IP

.TP
\fBSALLOC_PARTITION\fR
Same as \fB\-p, \-\-partition\fR
.IP

.TP
\fBSALLOC_POWER\fR
Same as \fB\-\-power\fR
.IP

.TP
\fBSALLOC_PROFILE\fR
Same as \fB\-\-profile\fR
.IP

.TP
\fBSALLOC_QOS\fR
Same as \fB\-\-qos\fR
.IP

.TP
\fBSALLOC_REQ_SWITCH\fR
When a tree topology is used, this defines the maximum count of switches
desired for the job allocation and optionally the maximum time to wait
for that number of switches. See \fB\-\-switches\fR.
.IP

.TP
\fBSALLOC_RESERVATION\fR
Same as \fB\-\-reservation\fR
.IP

.TP
\fBSALLOC_SIGNAL\fR
Same as \fB\-\-signal\fR
.IP

.TP
\fBSALLOC_SPREAD_JOB\fR
Same as \fB\-\-spread\-job\fR
.IP

.TP
\fBSALLOC_THREAD_SPEC\fR
Same as \fB\-\-thread\-spec\fR
.IP

.TP
\fBSALLOC_THREADS_PER_CORE\fR
Same as \fB\-\-threads\-per\-core\fR
.IP

.TP
\fBSALLOC_TIMELIMIT\fR
Same as \fB\-t, \-\-time\fR
.IP

.TP
\fBSALLOC_TRES_BIND\fR
Same as \fB\-\-tres\-bind\fR
.IP

.TP
\fBSALLOC_TRES_PER_TASK\fR
Same as \fB\-\-tres\-per\-task\fR
.IP

.TP
\fBSALLOC_USE_MIN_NODES\fR
Same as \fB\-\-use\-min\-nodes\fR
.IP

.TP
\fBSALLOC_WAIT_ALL_NODES\fR
Same as \fB\-\-wait\-all\-nodes\fR. Must be set to 0 or 1 to disable or enable
the option.
.IP

.TP
\fBSALLOC_WAIT4SWITCH\fR
Max time waiting for requested switches. See \fB\-\-switches\fR
.IP

.TP
\fBSALLOC_WCKEY\fR
Same as \fB\-\-wckey\fR
.IP

.TP
\fBSLURM_CONF\fR
The location of the Slurm configuration file.
.IP

.TP
\fBSLURM_DEBUG_FLAGS\fR
Specify debug flags for salloc to use. See DebugFlags in the
\fBslurm.conf\fR(5) man page for a full list of flags. The environment
variable takes precedence over the setting in the slurm.conf.
.IP

.TP
\fBSLURM_EXIT_ERROR\fR
Specifies the exit code generated when a Slurm error occurs
(e.g. invalid options).
This can be used by a script to distinguish application exit codes from
various Slurm error conditions.
Also see \fBSLURM_EXIT_IMMEDIATE\fR.
.IP

.TP
\fBSLURM_EXIT_IMMEDIATE\fR
Specifies the exit code generated when the \fB\-\-immediate\fR option
is used and resources are not currently available.
This can be used by a script to distinguish application exit codes from
various Slurm error conditions.
Also see \fBSLURM_EXIT_ERROR\fR.
.IP

.SH "OUTPUT ENVIRONMENT VARIABLES"
.PP
salloc will set the following environment variables in the environment of
the executed program:
.TP
\fBSLURM_*_HET_GROUP_#\fR
For a heterogeneous job allocation, the environment variables are set separately
for each component.
.IP

.TP
\fBSLURM_CLUSTER_NAME\fR
Name of the cluster on which the job is executing.
.IP

.TP
\fBSLURM_CONTAINER\fR
OCI Bundle for job.
Only set if \fB\-\-container\fR is specified.
.IP

.TP
\fBSLURM_CONTAINER_ID\fR
OCI id for job.
Only set if \fB\-\-container-id\fR is specified.
.IP

.TP
\fBSLURM_CPUS_PER_GPU\fR
Number of CPUs requested per allocated GPU.
Only set if the \fB\-\-cpus\-per\-gpu\fR option is specified.
.IP

.TP
\fBSLURM_CPUS_PER_TASK\fR
Number of CPUs requested per task.
Only set if either the \fB\-\-cpus\-per\-task\fR option or the
\fB\-\-tres\-per\-task=cpu=#\fR option is specified.
.IP

.TP
\fBSLURM_DIST_PLANESIZE\fR
Plane distribution size. Only set for plane distributions.
See \fB\-m, \-\-distribution\fR.
.IP

.TP
\fBSLURM_DISTRIBUTION\fR
Only set if the \fB\-m, \-\-distribution\fR option is specified.
.IP

.TP
\fBSLURM_GPU_BIND\fR
Requested binding of tasks to GPU.
Only set if the \fB\-\-gpu\-bind\fR option is specified.
.IP

.TP
\fBSLURM_GPU_FREQ\fR
Requested GPU frequency.
Only set if the \fB\-\-gpu\-freq\fR option is specified.
.IP

.TP
\fBSLURM_GPUS\fR
Number of GPUs requested.
Only set if the \fB\-G, \-\-gpus\fR option is specified.
.IP

.TP
\fBSLURM_GPUS_PER_NODE\fR
Requested GPU count per allocated node.
Only set if the \fB\-\-gpus\-per\-node\fR option is specified.
.IP

.TP
\fBSLURM_GPUS_PER_SOCKET\fR
Requested GPU count per allocated socket.
Only set if the \fB\-\-gpus\-per\-socket\fR option is specified.
.IP

.TP
\fBSLURM_HET_SIZE\fR
Set to count of components in heterogeneous job.
.IP

.TP
\fBSLURM_JOB_ACCOUNT\fR
Account name associated of the job allocation.
.IP

.TP
\fBSLURM_JOB_CPUS_PER_NODE\fR
Count of CPUs available to the job on the nodes in the allocation, using the
format \fICPU_count\fR[(x\fInumber_of_nodes\fR)][,\fICPU_count\fR
[(x\fInumber_of_nodes\fR)] ...].
For example: SLURM_JOB_CPUS_PER_NODE='72(x2),36' indicates that on the
first and second nodes (as listed by SLURM_JOB_NODELIST) the allocation
has 72 CPUs, while the third node has 36 CPUs.
\fBNOTE\fR: The \fBselect/linear\fR plugin allocates entire nodes to jobs, so
the value indicates the total count of CPUs on allocated nodes. The
\fBselect/cons_tres\fR plugin allocates individual
CPUs to jobs, so this number indicates the number of CPUs allocated to the job.
.IP

.TP
\fBSLURM_JOB_END_TIME\fR
The UNIX timestamp for a job's projected end time.
.IP

.TP
\fBSLURM_JOB_GPUS\fR
The global GPU IDs of the GPUs allocated to this job. The GPU IDs are not
relative to any device cgroup, even if devices are constrained with task/cgroup.
Only set in batch and interactive jobs.
.IP

.TP
\fBSLURM_JOB_ID\fR
The ID of the job allocation.
.IP

.TP
\fBSLURM_JOB_LICENSES\fR
Name and count of any license(s) requested.
.IP

.TP
\fBSLURM_JOB_NODELIST\fR
List of nodes allocated to the job.
.IP

.TP
\fBSLURM_JOB_NUM_NODES\fR
Total number of nodes in the job allocation.
.IP

.TP
\fBSLURM_JOB_PARTITION\fR
Name of the partition in which the job is running.
.IP

.TP
\fBSLURM_JOB_QOS\fR
Quality Of Service (QOS) of the job allocation.
.IP

.TP
\fBSLURM_JOB_RESERVATION\fR
Advanced reservation containing the job allocation, if any.
.IP

.TP
\fBSLURM_JOB_START_TIME\fR
UNIX timestamp for a job's start time.
.IP

.TP
\fBSLURM_JOBID\fR
The ID of the job allocation. See \fBSLURM_JOB_ID\fR. Included for backwards
compatibility.
.IP

.TP
\fBSLURM_MEM_BIND\fR
Set to value of the \fB\-\-mem\-bind\fR option.
.IP

.TP
\fBSLURM_MEM_BIND_LIST\fR
Set to bit mask used for memory binding.
.IP

.TP
\fBSLURM_MEM_BIND_PREFER\fR
Set to "prefer" if the \fB\-\-mem\-bind\fR option includes the prefer option.
.IP

.TP
\fBSLURM_MEM_BIND_SORT\fR
Sort free cache pages (run zonesort on Intel KNL nodes)
.IP

.TP
\fBSLURM_MEM_BIND_TYPE\fR
Set to the memory binding type specified with the \fB\-\-mem\-bind\fR option.
Possible values are "none", "rank", "map_map", "mask_mem" and "local".
.IP

.TP
\fBSLURM_MEM_BIND_VERBOSE\fR
Set to "verbose" if the \fB\-\-mem\-bind\fR option includes the verbose option.
Set to "quiet" otherwise.
.IP

.TP
\fBSLURM_MEM_PER_CPU\fR
Same as \fB\-\-mem\-per\-cpu\fR
.IP

.TP
\fBSLURM_MEM_PER_GPU\fR
Requested memory per allocated GPU.
Only set if the \fB\-\-mem\-per\-gpu\fR option is specified.
.IP

.TP
\fBSLURM_MEM_PER_NODE\fR
Same as \fB\-\-mem\fR
.IP

.TP
\fBSLURM_NNODES\fR
Total number of nodes in the job allocation. See \fBSLURM_JOB_NUM_NODES\fR.
Included for backwards compatibility.
.IP

.TP
\fBSLURM_NODELIST\fR
List of nodes allocated to the job. See \fBSLURM_JOB_NODELIST\fR. Included
for backwards compatibility.
.IP

.TP
\fBSLURM_NPROCS\fR
Set to value of the \fB\-\-ntasks\fR option, if specified. Or, if either of
the \fB\-\-ntasks\-per\-node\fR or \fB\-\-ntasks\-per\-gpu\fR options are
specified, set to the number of tasks in the job.
See \fBSLURM_NTASKS\fR. Included for backwards compatibility.
.IP

.TP
\fBSLURM_NTASKS\fR
Set to value of the \fB\-\-ntasks\fR option, if specified. Or, if either of
the \fB\-\-ntasks\-per\-node\fR or \fB\-\-ntasks\-per\-gpu\fR options are
specified, set to the number of tasks in the job.
.IP

.TP
\fBSLURM_NTASKS_PER_CORE\fR
Set to value of the \fB\-\-ntasks\-per\-core\fR option, if specified.
.IP

.TP
\fBSLURM_NTASKS_PER_GPU\fR
Set to value of the \fB\-\-ntasks\-per\-gpu\fR option, if specified.
.IP

.TP
\fBSLURM_NTASKS_PER_NODE\fR
Set to value of the \fB\-\-ntasks\-per\-node\fR option, if specified.
.IP

.TP
\fBSLURM_NTASKS_PER_SOCKET\fR
Set to value of the \fB\-\-ntasks\-per\-socket\fR option, if specified.
.IP

.TP
\fBSLURM_OOMKILLSTEP\fR
Same as \fB\-\-oom\-kill\-step\fR
.IP

.TP
\fBSLURM_OVERCOMMIT\fR
Set to \fB1\fR if \fB\-\-overcommit\fR was specified.
.IP

.TP
\fBSLURM_PROFILE\fR
Same as \fB\-\-profile\fR
.IP

.TP
\fBSLURM_SHARDS_ON_NODE\fR
Number of GPU Shards available to the step on this node.
.IP

.TP
\fBSLURM_SUBMIT_DIR\fR
The directory from which \fBsalloc\fR was invoked or, if applicable, the
directory specified by the \fB\-D, \-\-chdir\fR option.
.IP

.TP
\fBSLURM_SUBMIT_HOST\fR
The hostname of the computer from which \fBsalloc\fR was invoked.
.IP

.TP
\fBSLURM_TASKS_PER_NODE\fR
Number of tasks to be initiated on each node. Values are
comma separated and in the same order as SLURM_JOB_NODELIST.
If two or more consecutive nodes are to have the same task
count, that count is followed by "(x#)" where "#" is the
repetition count. For example, "SLURM_TASKS_PER_NODE=2(x3),1"
indicates that the first three nodes will each execute two
tasks and the fourth node will execute one task.
.IP

.TP
\fBSLURM_THREADS_PER_CORE\fR
This is only set if \fB\-\-threads\-per\-core\fR or
\fBSALLOC_THREADS_PER_CORE\fR were specified. The value will be set to the
value specified by \fB\-\-threads\-per\-core\fR or
\fBSALLOC_THREADS_PER_CORE\fR. This is used by subsequent srun calls within the
job allocation.
.IP

.TP
\fBSLURM_TRES_PER_TASK\fR
Set to the value of \fB\-\-tres\-per\-task\fR. If \fB\-\-cpus\-per\-task\fR or
\fB\-\-gpus\-per\-task\fR is specified, it is also set in
\fBSLURM_TRES_PER_TASK\fR as if it were specified in \fB\-\-tres\-per\-task\fR.
.IP

.SH "SIGNALS"
.LP
While salloc is waiting for a PENDING job allocation, most signals will cause
salloc to revoke the allocation request and exit.

However if the allocation has been granted and salloc has already started the
specified command, then salloc will ignore most signals.
salloc will not exit or release the allocation until the command exits.
One notable exception is SIGHUP. A SIGHUP signal will cause salloc to
release the allocation and exit without waiting for the command to finish.
Another exception is SIGTERM, which will be forwarded to the spawned process.

.SH "EXAMPLES"
.TP
To get an allocation, and open a new xterm in which srun commands may be typed \
interactively:
.IP

.nf
$ salloc \-N16 xterm
salloc: Granted job allocation 65537
# (at this point the xterm appears, and salloc waits for xterm to exit)
salloc: Relinquishing job allocation 65537
.fi

.TP
To grab an allocation of nodes and launch a parallel application on one \
command line:
.IP

.nf
$ salloc \-N5 srun \-n10 myprogram
.fi

.TP
To create a heterogeneous job with 3 components, each allocating a unique set \
of nodes:
.IP
.nf
$ salloc \-w node[2\-3] : \-w node4 : \-w node[5\-7] bash
salloc: job 32294 queued and waiting for resources
salloc: job 32294 has been allocated resources
salloc: Granted job allocation 32294
.fi

.SH "COPYING"
Copyright (C) 2006\-2007 The Regents of the University of California.
Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
.br
Copyright (C) 2008\-2010 Lawrence Livermore National Security.
.br
Copyright (C) 2010\-2022 SchedMD LLC.
.LP
This file is part of Slurm, a resource management program.
For details, see <https://slurm.schedmd.com/>.
.LP
Slurm is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version.
.LP
Slurm is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.

.SH "SEE ALSO"
.LP
\fBsinfo\fR(1), \fBsattach\fR(1), \fBsbatch\fR(1), \fBsqueue\fR(1), \fBscancel\fR(1), \fBscontrol\fR(1),
\fBslurm.conf\fR(5), \fBsched_setaffinity\fR (2), \fBnuma\fR (3)