1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
|
\name{nmise}
\alias{nmise}
\title{
mean integrated squared error for density estimation with normal data
}
\description{
This function evaluates the mean integrated squared error of a density
estimate which is constructed from data which follow a normal distribution.
}
\usage{
nmise(sd, n, h)
}
\arguments{
\item{sd}{
the standard deviation of the normal distribution from which the data arise.
}
\item{n}{
the sample size of the data.
}
\item{h}{
the smoothing parameter used to construct the density estimate.
}}
\value{
the mean integrated squared error of the density estimate.
}
\details{
see Section 2.4 of the reference below.
}
\references{
Bowman, A.W. and Azzalini, A. (1997). \emph{Applied Smoothing Techniques for
Data Analysis: the Kernel Approach with S-Plus Illustrations.}
Oxford University Press, Oxford.
}
\seealso{
\code{\link{nise}}
}
\examples{
x <- rnorm(50)
sd <- sqrt(var(x))
n <- length(x)
h <- seq(0.1, 2, length=32)
plot(h, nmise(sd, n, h), type = "l")
}
\keyword{nonparametric}
\keyword{smooth}
% Converted by Sd2Rd version 1.15.
|