1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
# test sampling of insert lengths
from operator import ne
PROGNAM = "../src/smalt"
REF_FASTA_NAME = "genome_1.fa.gz"
READ_PREFIX = "gen1l75i300e0"
KMER = 11
NSKIP = 5
TMPFIL_PREFIX = "TMP"
MAXNUM_NONPROPER_PAIRS = 20
def smalt_index(df, index_name, fasta_name, kmer, nskip):
from sys import exit
from subprocess import call
tup = (PROGNAM, 'index',
'-k', '%i' % (int(kmer)),
'-s', '%i' % (int(nskip)),
index_name,
fasta_name)
df.call(tup, "when indexing")
def smalt_sample(df,oufilnam, indexnam, readfil, matefil, option=[]):
tup = [PROGNAM, 'sample']
if option:
tup.extend(option)
tup.extend(
['-o', oufilnam,
indexnam,
readfil, matefil]
)
df.call(tup, "when sampling")
def smalt_check(df, readfil, matefil=""):
tup = [PROGNAM, 'check', readfil]
if len(matefil) > 0:
tup.append(matefil)
df.call(tup, "when checking")
def smalt_map(df, oufilnam, indexnam, samplenam, readfil, matefil, option=[]):
from sys import exit
from subprocess import call
tup = [PROGNAM, 'map']
if option:
tup.extend(option)
tup.extend(
['-g', samplenam,
'-f', 'cigar',
'-o', oufilnam,
indexnam,
readfil, matefil]
)
df.call(tup, "when mapping")
def assess_mapping(oufilnam):
from formats import Cigar, getNextCigarPair, openFile
infil = openFile(oufilnam, 'r')
cigA = Cigar()
cigB = Cigar()
pair_ctr = 0
nonproper_ctr = 0
(isOK, isEOF) = getNextCigarPair(infil, cigA, cigB)
while isOK:
pair_ctr = pair_ctr + 1
if cigA.mapcls != 'A':
nonproper_ctr = nonproper_ctr + 1
if cigB.mapcls != 'A':
nonproper_ctr = nonproper_ctr + 1
(isOK, isEOF) = getNextCigarPair(infil, cigA, cigB)
infil.close()
if pair_ctr != 10000:
exit("Found %i pairs, but expected 10,000." % pair_ctr)
if nonproper_ctr > MAXNUM_NONPROPER_PAIRS:
exit("Found %i non-proper pairs. Expected max. %i" %
(nonproper_ctr, MAXNUM_NONPROPER_PAIRS))
def compare_mapping(oufilnam1, oufilnam2):
from formats import Cigar, openFile
infil1 = openFile(oufilnam1, 'r')
infil2 = openFile(oufilnam2, 'r')
cig1 = Cigar()
cig2 = Cigar()
ctr1 = 0
ctr2 = 0
while 1:
if cig1.next(infil1):
break
ctr1 = ctr1 + 1
if cig2.next(infil2):
break
ctr2 = ctr2 + 1
if ne(cig1.qnam, cig2.qnam):
exit("readnames don't match: '%s' vs '%s'" % \
(cig1.qnam, cig2.qnam))
if ne(cig1,cig2) and cig1.mapq > 5 and cig2.mapq > 5:
exit("mappings don't match for read '{}'; cig1: {}, cig2: {}, sig1.mapq: {}, sig2.mapq: {}".format(
cig1.qnam, cig1, cig2, cig1.mapq, cig2.mapq))
infil2.close()
infil1.close()
if ctr1 != ctr1:
exit("Expected the same number of mates, got %i (A) and %i (B)" % \
ctr1, ctr2)
if ctr1 != 20000:
exit("Expected 20,000 reads, got %i." % ctr1)
if __name__ == '__main__':
from testdata import DataFiles
df = DataFiles()
refnam = df.joinData(REF_FASTA_NAME)
readnamA = df.joinData(READ_PREFIX + "_1.fq.gz")
readnamB = df.joinData(READ_PREFIX + "_2.fq.gz")
indexnam = df.addIndex(TMPFIL_PREFIX)
samplenam1 = df.addTMP(TMPFIL_PREFIX + ".1.txt")
samplenam2 = df.addTMP(TMPFIL_PREFIX + ".2.txt")
oufilnam1 = df.addTMP(TMPFIL_PREFIX + ".1.cig")
oufilnam2 = df.addTMP(TMPFIL_PREFIX + ".2.cig")
oufilnam3 = df.addTMP(TMPFIL_PREFIX + ".3.cig")
smalt_check(df,readnamA, readnamB)
smalt_index(df,indexnam, refnam, KMER, NSKIP)
smalt_sample(df,samplenam1, indexnam, readnamA, readnamB)
smalt_map(df,oufilnam1, indexnam, samplenam1, readnamA, readnamB)
assess_mapping(oufilnam1)
nthread_tup = ['-n', '4']
smalt_sample(df,samplenam2, indexnam, readnamA, readnamB, nthread_tup)
smalt_map(df,oufilnam2, indexnam, samplenam2, readnamA, readnamB, nthread_tup)
assess_mapping(oufilnam2)
nthread_tup = ['-n', '4', '-O']
smalt_map(df,oufilnam3, indexnam, samplenam2, readnamA, readnamB, nthread_tup)
compare_mapping(oufilnam1, oufilnam3)
df.cleanup()
exit(0)
|