1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
|
/*
-- This file is free software, which comes along with SmartEiffel. This
-- software is distributed in the hope that it will be useful, but WITHOUT
-- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-- FITNESS FOR A PARTICULAR PURPOSE. You can modify it as you want, provided
-- this header is kept unaltered, and a notification of the changes is added.
-- You are allowed to redistribute it and sell it, alone or as a part of
-- another product.
-- Copyright (C) 1994-2002 LORIA - INRIA - U.H.P. Nancy 1 - FRANCE
-- Dominique COLNET and Suzanne COLLIN - SmartEiffel@loria.fr
-- http://SmartEiffel.loria.fr
--
*/
/*
This file (SmartEiffel/sys/runtime/gc_lib.c) is automatically included
when the Garbage Collector is used (default, unless option -no_gc has been
selected).
*/
/*
The `mark_stack_and_registers' C function is called by the Garbage
Collector (GC) of SmartEiffel. It has to be customized for some systems,
but also for some C compilers. This file provides some definitions in the
end and has to be completed for systems which need specific work.
On some architectures, addresses increase as the stack grows; or,
conversely, addresses decrease as the stack grows. A C compiler may be
clever enough to hide some root object inside registers. Unfortunately all
registers are not always accessible via the C `setjmp' function!
Thus, in order to be able to use the GC on your architecture/C-compiler,
you have to provide the correct `mark_stack_and_registers' function.
What is the `mark_stack_and_registers' function supposed to do? The
`mark_stack_and_registers' function is supposed to notify the GC with all
the possible roots one can find in the C stack and registers by calling the
`gc_mark' function. A root is an object which must not be collected. The
SmartEiffel GC already knows about some root objects like once function
results or manifest strings. The `mark_stack_and_registers' function has to
notify the other possible roots. Obviously, one can find in the C stack any
kind of adresses, but the `gc_mark' function is clever enough to determine
if the passed pointer is an Eiffel object or not. When the passed pointer
reaches some Eiffel object, this object as well as its descendant(s) are
automatically marked as un-collectable.
In order to provide the most appropriate `mark_stack_and_registers'
function, the very first question is to know about the way the C stack is
managed (addresses of the stack may increase or decrease as the C stack
grows). The DEFAULT BEHAVIOUR FOR UNKNOWN SYSTEMS is to consider ADDRESSES
DECREASE AS THE STACK GROWS, as it's the most common case. The global C
variable `stack_bottom' is set with some pointer which is supposed to be
the bottom of the stack (this variable is automatically initialized in the
C main function). Note: using the current stack pointer inside
`mark_stack_and_registers', it is quite obvious to determine if addresses
increase or not as the C stack grows. Note2: on some systems, the stack is
not in contiguous addresses. In such case, `mark_stack_and_registers' has
to go through all the stack fragments.
Some roots may be stored only in registers and not in the C stack. In
order to reach the registers as well, the first attempt is to use setjmp,
in the hope that setjmp will save registers in the stack! Note: this
technique do not work on processors using windows registers (such as sparc
processors).
*/
int se_gc_strategy = SE_GC_DEFAULT_MEMORY_STRATEGY;
int collector_counter = 0;
static void gcna_align_mark(rsoc*c,void*o);
static rsoc*rsocfl=NULL; /* ReSizable Object Chunk Free List. */
void**stack_bottom=NULL;
mch**gcmt=NULL; /* Garbage Collector Main Table. */
int gcmt_max=2048;
int gcmt_used=0;
fsoc*fsocfl=NULL; /* Fixed Size Object Chunk Free List. */
int gc_is_off=1;
unsigned int fsoc_count=0;
unsigned int rsoc_count=0;
void*gcmt_tail_addr=NULL;
static int chunk_rounded(int size) {
int rounded_size = size;
int diff = rounded_size%RSOC_SIZE;
if (diff != 0) rounded_size += (RSOC_SIZE-diff);
return rounded_size;
}
static void free_and_remove_from_gcmt(mch* c) {
/* Remove and free the chunk `c' from the
* gcmt (Garbage Collector Main Table).
*/
mch**p=(gcmt+gcmt_used-1);
mch*save=*p;
mch*save2;
p--;
while(save != c) {
save2 = save;
save = *p;
*p = save2;
p--;
}
free(c);
gcmt_used--;
}
static void may_free_rsocfl(void) {
/* May free all chunks of `rsocfl' (ReSizable Object Chunk Free List)
in some circumstances.
*/
rsoc* next, *current;
unsigned int count = rsocfl_count();
if ((count > 50) && (count > (rsoc_count >> 1))) {
current=rsocfl;
rsocfl=NULL;
while (current != NULL) {
next=current->next;
if (current->isize == current->header.size) {
free_and_remove_from_gcmt(((mch*)current));
rsoc_count--;
}
else {
current->next=rsocfl;
rsocfl=current;
}
current = next;
}
}
}
int gc_memory_used(void) {
int i;
int result = 0;
mch* mch;
for (i = gcmt_used; i --> 0; ) {
mch = gcmt[i];
switch(mch->state_type) {
case RSO_USED_CHUNK:
case FSO_USED_CHUNK:
case FSO_STORE_CHUNK:
result += mch->size;
break;
default:
break;
}
}
return result;
}
void gc_sweep(void) {
mch** p2 = gcmt;
mch** p1 = gcmt+1;
mch**eogcmt=gcmt+gcmt_used;
if (FREE_CHUNK((*p2)->state_type)) {
if (RSO_FREE_CHUNK == ((*p2)->state_type)) {
((rsoc*)(*p2))->next=NULL;
rsocfl=((rsoc*)(*p2));
}
else {
rsocfl=NULL;
}
}
else {
((*gcmt)->swfp)(*p2);
if (RSO_FREE_CHUNK==((*p2)->state_type)) {
((rsoc*)(*p2))->next=NULL;
rsocfl=((rsoc*)(*p2));
}
else {
rsocfl=NULL;
}
}
while (p1 < eogcmt) {
if (FREE_CHUNK((*p1)->state_type)) {
if (RSO_FREE_CHUNK == ((*p1)->state_type)) {
if (RSO_FREE_CHUNK == ((*p2)->state_type)) {
if (((char*)(*p2))+(*p2)->size == ((char*)(*p1))) {
((*p2)->size)+=((*p1)->size);
p1++;
}
else {
((rsoc*)(*p1))->next=rsocfl;
rsocfl=((rsoc*)(*p1));
*(p2+1)=*p1; p2++; p1++;
}
}
else {
((rsoc*)(*p1))->next=rsocfl;
rsocfl=((rsoc*)(*p1));
*(p2+1)=*p1; p2++; p1++;
}
}
else {
*(p2+1)=*p1; p2++; p1++;
}
}
else {
((*p1)->swfp)(*p1);
if (RSO_FREE_CHUNK == ((*p1)->state_type)) {
if (RSO_FREE_CHUNK == ((*p2)->state_type)) {
if (((char*)(*p2))+(*p2)->size == ((char*)(*p1))) {
((*p2)->size)+=((*p1)->size);
p1++;
}
else {
((rsoc*)(*p1))->next=rsocfl;
rsocfl=((rsoc*)(*p1));
*(p2+1)=*p1; p2++; p1++;
}
}
else {
((rsoc*)(*p1))->next=rsocfl;
rsocfl=((rsoc*)(*p1));
*(p2+1)=*p1; p2++; p1++;
}
}
else {
*(p2+1)=*p1; p2++; p1++;
}
}
}
gcmt_used=(p2-gcmt)+1;
may_free_rsocfl();
}
/* return the mch containing p or NULL if p is not
* a valid address or was externally allocated
*/
mch * gc_find_chunk(void * p){
if ((p>((void*)*gcmt))&&(p<=gcmt_tail_addr)) {
int i1=0;
int i2=gcmt_used-1;
int m=i2>>1;
mch*c;
for (;i2>i1;m=((i1+i2)>>1)) {
if (p<=((void*)gcmt[m+1])) {
i2=m;
}
else {
i1=m+1;
}
}
c=gcmt[i2];
if((char*)p<(char*)c+c->size) /* check for upper bound */
if (!(FREE_CHUNK(c->state_type)))
return c;
}
return NULL;
}
void gc_mark(void*p) {
mch * c = gc_find_chunk(p);
if(NULL != c)
(c->amfp)(c,p);
}
int gc_stack_size(void) {
void*stack_top[2]={NULL,NULL};
if (stack_top > stack_bottom) {
return ((void**)stack_top)-((void**)stack_bottom);
}
else {
return ((void**)stack_bottom)-((void**)stack_top);
}
}
/*
To delay Garbage Collection when the stack is too large.
To allow fast increase of ceils.
*/
#define FSOC_LIMIT (10240/((FSOC_SIZE)>>10))
#define RSOC_LIMIT (10240/((RSOC_SIZE)>>10))
/*
When stack is too large, collection may be delayed.
*/
#define GCLARGESTACK 50000
int garbage_delayed(void) {
/*
To delay the first GC call.
*/
if (gc_stack_size() > GCLARGESTACK) {
if (fsoc_count_ceil <= fsoc_count) {
if (rsoc_count_ceil <= rsoc_count) {
if ((fsoc_count<FSOC_LIMIT)&&(rsoc_count<RSOC_LIMIT)) {
fsoc_count_ceil++;
rsoc_count_ceil++;
return 1;
}
else return 0;
}
else {
if (fsoc_count<FSOC_LIMIT) {
fsoc_count_ceil++;
return 1;
}
else return 0;
}
}
else {
if (rsoc_count_ceil <= rsoc_count) {
if (rsoc_count<RSOC_LIMIT) {
rsoc_count_ceil++;
return 1;
}
else return 0;
}
else return 0;
}
}
else {
return 0;
}
}
void gc_update_ceils(void) {
/* This function is automatically called after each collection
cycle.
*/
if (se_gc_strategy == SE_GC_LOW_MEMORY_STRATEGY) {
fsoc_count_ceil = fsoc_count;
rsoc_count_ceil = rsoc_count;
/* Todo: we should also consider to free unused chunks here. */
return;
}
if (se_gc_strategy == SE_GC_HIGH_MEMORY_STRATEGY) {
fsoc_count_ceil = (256 + fsoc_count) << 2;
rsoc_count_ceil = (256 + rsoc_count) << 2;
return;
}
/* The SE_GC_DEFAULT_MEMORY_STRATEGY. */
/* Compute fsoc_count_ceil: */
if (fsocfl == NULL) {
if (fsoc_count >= fsoc_count_ceil) {
if (fsoc_count_ceil < FSOC_LIMIT) {
fsoc_count_ceil <<= 1;
}
else {
unsigned int c = fsoc_count + (fsoc_count/3);
if (fsoc_count_ceil < c)
fsoc_count_ceil = c;
}
}
}
else {
if (fsoc_count_ceil < fsoc_count) {
fsoc_count_ceil = fsoc_count;
}
}
/* Compute rsoc_count_ceil: */
if (rsocfl == NULL) {
if (rsoc_count >= rsoc_count_ceil) {
if (rsoc_count_ceil < RSOC_LIMIT) {
rsoc_count_ceil <<= 1;
}
else {
unsigned int c = rsoc_count + (rsoc_count / 3);
if (rsoc_count_ceil < c) {
rsoc_count_ceil = c;
}
}
}
}
else {
if (rsoc_count_ceil < rsoc_count) {
rsoc_count_ceil = rsoc_count;
}
}
}
static void gc_add_into_gcmt(mch*c) {
/* Update the `gcmt' (Garbage Collector Main Table) by adding the
new `mch' (Memory Chunk Header).
*/
mch** p;
if (gcmt_used == gcmt_max) {
gcmt_max <<= 1;
gcmt = ((mch**)(se_realloc(gcmt,(gcmt_max+1)*sizeof(void*))));
}
for (p=gcmt+(gcmt_used++ -1) ; (p>=gcmt)&&(*p>c) ; p--) {
*(p+1) = *p;
}
*(p+1) = c;
}
static char*rso_from_store(na_env*nae,unsigned int size) {
rsoh*r=(nae->store);
nae->store_left-=size;
if ((nae->store_left) > sizeof(rsoh)) {
r->header.size=size;
nae->store=((rsoh*)(((char*)(nae->store))+size));
}
else {
r->header.size=size+nae->store_left;
nae->store_left=0;
}
(r->header.magic_flag)=RSOH_UNMARKED;
((void)memset((r+1),0,r->header.size-sizeof(rsoh)));
return (char*)(r+1);
}
static void rsoc_sweep(rsoc*c) {
na_env*nae=c->nae;
rsoh*gp=(rsoh*)&(c->first_header);
rsoh*pp;
rsoh*eoc=((rsoh*)(((char*)c)+c->header.size));
c->free_list_of_large=NULL;
if (c->header.size > RSOC_SIZE) {
if (gp->header.magic_flag == RSOH_MARKED) {
gp->header.magic_flag=RSOH_UNMARKED;
c->next=nae->chunk_list;
nae->chunk_list=c;
}
else {
c->header.state_type=RSO_FREE_CHUNK;
}
return;
}
while (gp<eoc) {
while (gp->header.magic_flag == RSOH_MARKED) {
gp->header.magic_flag=RSOH_UNMARKED;
gp=((rsoh*)(((char*)gp)+gp->header.size));
if(gp>=eoc) {
c->next=nae->chunk_list;
nae->chunk_list=c;
return;
}
}
gp->header.magic_flag=RSOH_FREE;
pp=(rsoh*)(((char*)gp)+gp->header.size);
while ((pp<eoc)&&(pp->header.magic_flag != RSOH_MARKED)) {
pp->header.magic_flag=RSOH_FREE;
gp->header.size+=pp->header.size;
pp=((rsoh*)(((char*)pp)+pp->header.size));
}
if (gp->header.size >= RSOC_MIN_STORE) {
if (nae->store_left==0) {
nae->store_left=gp->header.size;
nae->store=gp;
nae->store_chunk=c;
}
else if (nae->store->header.size < gp->header.size) {
((fll_rsoh*)nae->store)->nextflol=nae->store_chunk->free_list_of_large;
nae->store_chunk->free_list_of_large=((fll_rsoh*)nae->store);
nae->store_left=gp->header.size;
nae->store=gp;
nae->store_chunk=c;
}
else {
((fll_rsoh*)gp)->nextflol=c->free_list_of_large;
c->free_list_of_large=((fll_rsoh*)gp);
}
}
gp=pp;
}
if (((rsoh*)(&c->first_header))->header.size >=
(c->header.size-sizeof(rsoc)+sizeof(rsoh))){
c->header.state_type=RSO_FREE_CHUNK;
nae->store_chunk=NULL;
nae->store_left=0;
}
else{
c->next=nae->chunk_list;
nae->chunk_list=c;
}
}
static const rsoc MRSOC = {
{
RSOC_SIZE,
RSO_USED_CHUNK,
((void(*)(mch*,void*))gcna_align_mark),
((void(*)(mch*))rsoc_sweep)
},
0,
NULL,
NULL,
NULL,
{
{
0,
RSOH_MARKED
}
}
};
static void rsoc_malloc(na_env*nae) {
rsoc* r = ((rsoc*)(se_malloc(RSOC_SIZE)));
rsoc_count++;
*r=MRSOC;
r->nae=nae;
r->isize=RSOC_SIZE;
nae->store=(&(r->first_header));
nae->store_left=RSOC_SIZE-sizeof(rsoc)+sizeof(rsoh);
nae->store_chunk=r;
r->next=nae->chunk_list;
nae->chunk_list=r;
gc_add_into_gcmt((mch*)r);
}
static rsoc* rsocfl_best_fit(unsigned int size) {
unsigned int best_size = 0;
rsoc *pc,*best_pc,*best_c, *c;
if (rsocfl==NULL)
return NULL;
pc=NULL;
best_pc=NULL;
best_c=NULL;
c=rsocfl;
while ((NULL!=c)&&(NULL==best_c)){
if (c->header.size>=size){
best_c=c;
best_pc=pc;
best_size=c->header.size;
}
pc=c;
c=c->next;
}
if (NULL==c){
if (best_pc != NULL)
best_pc->next=best_c->next;
else if (best_c==rsocfl)
rsocfl=best_c->next;
return best_c;
}
do {
if ((c->header.size >= size) && (c->header.size < best_size)) {
best_c = c;
best_pc = pc;
best_size = c->header.size;
}
pc=c;
c=c->next;
}
while(c!=NULL);
if (NULL==best_pc) {
rsocfl = best_c->next;
}
else {
best_pc->next=best_c->next;
}
return best_c;
}
static int get_store_in(rsoc*c,unsigned int size) {
na_env*nae=c->nae;
fll_rsoh*pf=NULL;
fll_rsoh*f=c->free_list_of_large;
while (f != NULL) {
if (f->rsoh_field.size >= size) {
nae->store_left=f->rsoh_field.size;
nae->store=(rsoh*)f;
nae->store_chunk=c;
if (pf == NULL) {
c->free_list_of_large=f->nextflol;
}
else {
pf->nextflol=f->nextflol;
}
return 1;
}
pf = f;
f = f->nextflol;
}
return 0;
}
char*new_na_from_chunk_list(na_env*nae,unsigned int size) {
rsoc*c=nae->chunk_list;
unsigned int csize;
while (c != NULL) {
if (get_store_in(c,size)) {
return rso_from_store(nae,size);
}
c = c->next;
}
csize=size+(sizeof(rsoc)-sizeof(rsoh));
c=rsocfl_best_fit(csize);
if (c != NULL){
if ((c->header.size > RSOC_SIZE)
&&
(c->header.size-csize > RSOC_MIN_STORE*4)) {
int csize_left=c->header.size-csize;
if ((csize_left%sizeof(double))!=0) {
csize_left-=(csize_left%sizeof(double));
csize=c->header.size-csize_left;
}
c->header.size=csize_left;
c->next=rsocfl;
rsocfl=c;
c=(rsoc*)(((char*)c)+csize_left);
gc_add_into_gcmt((mch*)c);
c->header.amfp=(void(*)(mch*,void*))gcna_align_mark;
c->header.swfp=(void(*)(mch*))rsoc_sweep;
}
else {
csize=c->header.size;
}
c->header.size=csize;
c->header.state_type=RSO_USED_CHUNK;
c->free_list_of_large=NULL;
c->nae=nae;
nae->store=(&(c->first_header));
nae->store_left=csize-sizeof(rsoc)+sizeof(rsoh);
nae->store_chunk=c;
c->next=nae->chunk_list;
nae->chunk_list=c;
return rso_from_store(nae,size);
}
return NULL;
}
char*new_na(na_env*nae,unsigned int size) {
if (nae->store_left>0) {
nae->store->header.size=nae->store_left;
nae->store->header.magic_flag=RSOH_FREE;
if (nae->store_left >= RSOC_MIN_STORE) {
((fll_rsoh*)(nae->store))->nextflol=nae->store_chunk->free_list_of_large;
nae->store_chunk->free_list_of_large=((fll_rsoh*)nae->store);
}
nae->store_left=0;
}
if ((nae->store_chunk!=NULL)&&(get_store_in(nae->store_chunk,size))) {
return rso_from_store(nae,size);
}
{
char*r=new_na_from_chunk_list(nae,size);
if (r!=NULL)
return r;
}
if (rsoc_count<rsoc_count_ceil) {
if((size+sizeof(rsoc)-sizeof(rsoh))>RSOC_SIZE){
rsoc*c;
rsoh*r;
unsigned int rounded_size= chunk_rounded(size+sizeof(rsoc)-sizeof(rsoh));
c=((rsoc*)(se_malloc(rounded_size)));
r=(&(c->first_header));
rsoc_count++;
*c=MRSOC;
c->isize = rounded_size;
c->header.size=rounded_size;
c->nae=nae;
c->next=nae->chunk_list;
nae->chunk_list=c;
gc_add_into_gcmt((mch*)c);
r->header.size=size;
(r->header.magic_flag)=RSOH_UNMARKED;
((void)memset((r+1),0,size-sizeof(rsoh)));
return (char*)(r+1);
}
else {
rsoc_malloc(nae);
return rso_from_store(nae,size);
}
}
gc_start();
if (size<=(nae->store_left)) {
return rso_from_store(nae,size);
}
{
char*r=new_na_from_chunk_list(nae,size);
if (r!=NULL) {
return r;
}
}
if((size+sizeof(rsoc)-sizeof(rsoh))>RSOC_SIZE){
rsoc*c;
rsoh*r;
unsigned int rounded_size = chunk_rounded(size+sizeof(rsoc)-sizeof(rsoh));
c=((rsoc*)(se_malloc(rounded_size)));
r=(&(c->first_header));
rsoc_count++;
*c=MRSOC;
c->isize = rounded_size;
c->header.size=rounded_size;
c->nae=nae;
c->next=nae->chunk_list;
nae->chunk_list=c;
gc_add_into_gcmt((mch*)c);
r->header.size=size;
(r->header.magic_flag)=RSOH_UNMARKED;
((void)memset((r+1),0,size-sizeof(rsoh)));
gc_update_ceils();
return (char*)(r+1);
}
else {
rsoc_malloc(nae);
gc_update_ceils();
return rso_from_store(nae,size);
}
}
static void gcna_align_mark(rsoc*c,void*o) {
na_env* nae = c->nae;
fll_rsoh* f;
fll_rsoh* pf;
char* b = (char*)&(c->first_header);
/* properly aligned ? */
if (((((char*)o)-((char*)c))%sizeof(int)) != 0) {
return;
}
/* already marked ? */
if ((((rsoh*)o)-1)->header.magic_flag != RSOH_UNMARKED) {
return;
}
if (((char*)o) < ((char*)(c+1))) {
return;
}
/* a large chunck ? */
if (c->header.size > RSOC_SIZE) {
if (o == (c+1)) {
nae->gc_mark((T0*)o);
}
return;
}
pf=NULL;
f=c->free_list_of_large;
while ((f != NULL) && (f < ((fll_rsoh*)o))) {
pf=f;
f=f->nextflol;
}
if (pf == NULL) {
pf=(fll_rsoh*)b;
}
while ((((rsoh*)pf)+1) < (rsoh*)o) {
pf = ((fll_rsoh*)(((char*)pf)+pf->rsoh_field.size));
}
if (o == (((rsoh*)pf)+1)) {
nae->gc_mark((T0*)o);
}
}
unsigned int rsocfl_count(void) {
/* Returns the number of items in the ReSizable Object Free List.
*/
unsigned int r=0;
rsoc*p=rsocfl;
while (p!=NULL) {
r++;
p=p->next;
}
return r;
}
unsigned int fsocfl_count(void) {
unsigned int r=0;
fsoc*p=fsocfl;
while (p!=NULL) {
r++;
p=p->next;
}
return r;
}
void gc_dispose_before_exit(void) {
mch** p = gcmt;
mch**eogcmt=gcmt+gcmt_used;
while (p < eogcmt) {
if (((*p)->state_type == FSO_STORE_CHUNK) ||
((*p)->state_type == FSO_USED_CHUNK)) {
((*p)->swfp)(*p);
}
p++;
}
}
fsoc* gc_fsoc_get1(void) {
/* Get a `fsoc' (Fixed Size Object Chunk) from the free fsoc list or
allocate a new one (using `se_malloc') only when the ceil is not
yet reached. Otherwise, call the `gc_start()' function and
return NULL.
*/
fsoc* result;
if (fsocfl != NULL) {
result = fsocfl;
fsocfl = fsocfl->next;
return result;
}
else if (fsoc_count_ceil > fsoc_count) {
result = ((fsoc*)se_malloc(FSOC_SIZE));
fsoc_count++;
gc_add_into_gcmt((mch*)result);
return result;
}
else {
gc_start();
return NULL;
}
}
fsoc* gc_fsoc_get2(void) {
/* Get a `fsoc' (Fixed Size Object Chunk) or force the allocation of a
new `fsoc' (using the `se_malloc' function). Update various ceils
accordingly.
*/
fsoc* result;
if (fsocfl != NULL) {
result = fsocfl;
fsocfl=fsocfl->next;
return result;
}
else {
result = ((fsoc*)(se_malloc(FSOC_SIZE)));
fsoc_count++;
gc_update_ceils();
gc_add_into_gcmt((mch*)result);
return result;
}
}
#if defined(__sparc__) || defined(sparc) || defined(__sparc)
/* For SPARC architecture.
As this part contains assembly code (asm), you must not use
the flag -ansi of gcc compiler.
*/
void mark_loop(void) {
void** max = stack_bottom;
void** stack_pointer;
void* stack_top[2]={NULL,NULL};
stack_pointer = stack_top;
/* Addresses decrease as the stack grows. */
while (stack_pointer <= max) {
gc_mark(*(stack_pointer++));
}
}
void mark_stack_and_registers(void) {
# if defined(__sparcv9)
asm(" flushw");
# else
asm(" ta 0x3 ! ST_FLUSH_WINDOWS");
# endif
mark_loop();
}
#elif defined(__ELATE__) || defined(ELATE)
/* GNU Eiffel's VP (Virtual Processor) garbage collector for Elate.
(c) 2000 Rudi Chiarito <rudi@amiga.com>
Thanks to Andy Stout and Kevin Croombs at Tao Group for their
precious help!
ChangeLog:
- 2000-06-12 Rudi Chiarito <rudi@amiga.com>
* Version 1.0
- 2001-01-01 Joseph Kiniry <kiniry@acm.org>
* Integrated with new SE 0.75b
- 2001-08-10 Rudi Chiarito <rudi@amiga.com>
* Inlined and optimised range marking
* Added some more comments
* Added conditional breakpoint in mark_stack_and_registers
- 2002-09-21 Rudi Chiarito <rudi@amiga.com>
* Removed redundant 'ret'
*/
__inline__ void mark_stack_and_registers(void)
{
void *pointer_to_gc_mark = &gc_mark;
__asm__ __volatile__
(
/*
WARNING: funky code ahead!
\t and \n are needed to make the final output easier to read
while debugging. Hopefully you'll never have to bother with all
of this.
Registers:
p0 pointer to stack block
p1 pointer to gc_mark()
p2 scratch pointer
i0 length of current stack block
i1 scratch register
*/
# ifdef __ELATE_SE_DEBUG_GC
"\tqcall sys/cii/breakpt,(-:-)\n"
# endif
"\tsync\n" /* spill all the registers */
"\tsyncreg\n" /* to the stack */
"\tcpy.p %0,p1\n" /* pointer to gc_mark() */
/* pointer to the current stack block */
"\tcpy.p [gp+PROC_STACK],p0\n"
/* point to last location in the block, before the descriptor */
"\tcpy.p p0 + ([(p0 - STK_SIZE) + STK_LENGTH] - STK_SIZE - 4),p2\n"
/* mark the contents of the current stack block */
"\twhile p2>=sp\n"
"\t\tgos p1,(p2 : -)\n"
"\t\tsub.p 4,p2\n"
"\tendwhile\n"
/* now scan other blocks (if any) */
"\tloop\n"
"\t\tcpy.p [p0 - STK_SIZE + STK_LINK],p0\n" /* get next block */
"\t\tbreakif p0=NULL\n"
/* point to last location in the block, before the descriptor */
"\t\tcpy.p p0 + ([(p0 - STK_SIZE) + STK_LENGTH] - STK_SIZE - 4),p2\n"
/* mark this block */
"\t\twhile p2>=p0\n"
"\t\t\tgos p1,(p2 : -)\n"
"\t\t\tsub.p 4,p2\n"
"\t\tendwhile\n"
"\tendloop\n"
: /* no output */
: "p" (pointer_to_gc_mark)
: "p0", "p1", "p2", "i0"
);
}
#elif defined(__hppa__) || defined(__hppa) || defined(__hp9000) || \
defined(__hp9000s300) || defined(hp9000s300) || \
defined(__hp9000s700) || defined(hp9000s700) || \
defined(__hp9000s800) || defined(hp9000s800) || defined(hp9000s820)
/****************************************************************************
* Generic code for architectures where addresses increase as the stack grows.
****************************************************************************/
void mark_stack_and_registers(void){
void** max = stack_bottom;
JMP_BUF registers; /* The jmp_buf buffer is in the C stack. */
void**stack_pointer; /* Used to traverse the stack and registers assuming
that `setjmp' will save registers in the C stack.
*/
(void)SETJMP(registers); /* To fill the C stack with registers. */
stack_pointer = (void**)(®isters) + ((sizeof(JMP_BUF)/sizeof(void*))-1);
/* stack_pointer will traverse the JMP_BUF as well (jmp_buf size is added,
otherwise stack_pointer would be below the registers structure). */
# if !defined(SE_BOOST)
if (stack_pointer < max) {
fprintf(stderr, "Wrong stack direction: your stack decrease as the stack grows (or complex stack management). Please drop an e-mail to SmartEiffel@loria.fr\n");
exit(1); }
# endif
while (stack_pointer >= max) {
gc_mark(*(stack_pointer--));
}
}
#else
/****************************************************************************
* Generic code for architectures where addresses decrease as the stack grows.
****************************************************************************/
void mark_stack_and_registers(void){
void** max = stack_bottom;
JMP_BUF registers; /* The jmp_buf buffer is in the C stack. */
void**stack_pointer; /* Used to traverse the stack and registers assuming
that `setjmp' will save registers in the C stack.
*/
(void)SETJMP(registers); /* To fill the C stack with registers. */
stack_pointer = (void**)(®isters);
# if !defined(SE_BOOST)
if (stack_pointer > max) {
fprintf(stderr, "Wrong stack direction: the stack addresses increase as the stack grows (or complex stack management). Please drop an e-mail to SmartEiffel@loria.fr\n");
exit(1); }
# endif
while (stack_pointer <= max) {
gc_mark(*(stack_pointer++));
}
}
#endif
|