1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
#!/usr/bin/perl
use strict;
use warnings;
use Chemistry::Atom qw( angle_deg dihedral_deg );
use Chemistry::File::SDF;
use Chemistry::Mol;
use Chemistry::OpenSMILES::Stereo qw( mark_all_double_bonds );
use Chemistry::OpenSMILES::Writer qw( write_SMILES );
use File::Basename qw( basename );
use Getopt::Long::Descriptive;
use Graph::Traversal::DFS;
use Graph::Undirected;
use List::Util qw( any min sum );
my $default_planarity_threshold = 1e-6;
my $basename = basename $0;
my( $opt, $usage ) = describe_options( <<"END" . 'OPTIONS',
USAGE
$basename [<args>] [<files>]
DESCRIPTION
$basename converts SDF files into SMILES.
END
[ 'convert-type-8-bonds-to-covalent',
'convert all type 8 bonds to single covalent bonds' ],
[],
[ tetrahedral_chiral_method => hidden => {
one_of => [
[ 'ignore-flat-tetrahedra' =>
'when considering tetrahedral chiral centers, ignore ' .
'flat tetrahedra (based on volume threshold) [default]' ],
[ 'require-tetrahedral-angles' =>
'when considering tetrahedral chiral centers, ignore ' .
'tetrahedra with average bond angle far from 109.5 degrees' ],
],
default => 'ignore_flat_tetrahedra'
}
],
[ 'planarity-threshold=f',
'planarity volume threshold in cubic angstroms; tetrahedra with ' .
'chiral volume less or equal to the given one will be understood ' .
"as flat [default: $default_planarity_threshold]",
{ default => $default_planarity_threshold } ],
[ 'normalise-vectors',
'normalise vectors used for chiral volume calculation' ],
[],
[ 'help', 'print usage message and exit', { shortcircuit => 1 } ],
);
if( $opt->help ) {
print $usage->text;
exit;
}
@ARGV = ( '-' ) unless @ARGV;
Chemistry::Mol->register_format( sdf => Chemistry::File::SDF:: );
# Perl Clone module does native cloning, thus it should be able to handle
# larger molecules than the default Storable cloer.
$Chemistry::Mol::clone_backend = 'Clone';
foreach my $filename (@ARGV) {
local $SIG{__WARN__} = sub {
print STDERR "$basename: $filename: $_[0]"
};
eval {
my $reader = Chemistry::Mol->file( $filename, format => 'sdf' );
$reader->open( '<' );
while( my $molecule = $reader->read_mol( $reader->fh ) ) {
# Resolving the issue with bonds of order 8
for my $bond ($molecule->bonds) {
next unless $bond->type == 8;
if( $opt->convert_type_8_bonds_to_covalent ) {
$bond->type(1);
}
if( grep { !$_->formal_charge } $bond->atoms ) {
$bond->type(1) if !$opt->convert_type_8_bonds_to_covalent;
next;
}
my @atoms = sort { $a->formal_charge <=>
$b->formal_charge } $bond->atoms;
if( $opt->convert_type_8_bonds_to_covalent ) {
# When bond 8 is converted into plain covalent bond,
# charges for both atoms have to be adjusted
next unless $atoms[0]->formal_charge < 0 &&
$atoms[1]->formal_charge > 0;
my $min_abs_charge = min -$atoms[0]->formal_charge,
$atoms[1]->formal_charge;
$atoms[0]->formal_charge( $atoms[0]->formal_charge +
$min_abs_charge );
$atoms[1]->formal_charge( $atoms[1]->formal_charge -
$min_abs_charge );
} else {
# Replace bond 8 with a single bond if both of the atoms
# have opposite charges and decrease the charges by 1.
# Further increase the bond order if both of the atoms
# still have opposing charges.
while( $atoms[0]->formal_charge < 0 &&
$atoms[1]->formal_charge > 0 ) {
if( $bond->type == 3 ) {
last; # TODO: Not sure what to do with higher-orders
} elsif( $bond->type == 8 ) {
$bond->type(0);
}
$bond->type($bond->type+1);
$atoms[0]->formal_charge($atoms[0]->formal_charge+1);
$atoms[1]->formal_charge($atoms[1]->formal_charge-1);
}
# TODO: What to do when both charges are of the same sign?
}
}
my $name = $molecule->name;
my @graphs;
for my $moiety ($molecule->separate) {
my %atoms;
my %atom_by_vertex;
my $graph = Graph::Undirected->new( refvertexed => 1 );
my @atoms = $moiety->atoms;
# First pass through atoms to add them to molecular graph
for my $i (0..$#atoms) {
my $atom = $atoms[$i];
my $vertex = {
charge => $atom->formal_charge,
number => $i,
symbol => $atom->symbol,
};
my $most_common_isotope =
Chemistry::Atom->new( symbol => $atom->symbol );
if( $most_common_isotope->mass != $atom->mass ) {
$vertex->{isotope} = sprintf( '%.0f', $atom->mass ) + 0;
}
$graph->add_vertex( $vertex );
$atoms{$atom} = $vertex;
$atom_by_vertex{$vertex} = $atom;
}
# Second pass through atoms to set chirality
for my $i (0..$#atoms) {
my $atom = $atoms[$i];
my $vertex = $atoms{$atom};
my @neighbours = $atom->neighbors;
my $hydrogens = grep { $_->symbol eq 'H' &&
scalar $_->neighbors == 1 }
@neighbours;
next unless @neighbours == 4 && $hydrogens <= 1;
# Calculate the chiral volume for tetrahedral chiral
# centers
my( $a, $b, $c ) =
map { $_->{coords} - $neighbours[0]->{coords} }
@neighbours[1..3];
if( $opt->normalise_vectors ) {
( $a, $b, $c ) = map { $_->norm } ( $a, $b, $c );
}
my $volume = $a . ( $b x $c );
if( $opt->tetrahedral_chiral_method eq 'ignore_flat_tetrahedra' ) {
next if abs( $volume ) <= $opt->planarity_threshold;
} else {
my $angle = sum angle_deg( $neighbours[0], $atom, $neighbours[1] ),
angle_deg( $neighbours[0], $atom, $neighbours[2] ),
angle_deg( $neighbours[0], $atom, $neighbours[3] ),
angle_deg( $neighbours[1], $atom, $neighbours[2] ),
angle_deg( $neighbours[1], $atom, $neighbours[3] ),
angle_deg( $neighbours[2], $atom, $neighbours[3] );
next if abs( $angle / 6 - 109.5 ) > 5;
}
$vertex->{chirality} = $volume < 0 ? '@' : '@@';
$vertex->{chirality_neighbours} =
[ map { $atoms{$_} } @neighbours ];
}
# First pass through bonds to set them as given in SDF
for my $bond ($moiety->bonds) {
my $type = bond_type( $bond->type );
if( $type ) {
$graph->set_edge_attribute(
map( { $atoms{$_} } $bond->atoms ),
'bond',
$type );
} else {
$graph->add_edge(
map { $atoms{$_} } $bond->atoms );
}
}
# Derive cis/trans settings for double bonds
mark_all_double_bonds( $graph,
sub {
my $angle = dihedral_deg( map { $atom_by_vertex{$_} } @_ );
return abs $angle < 90 ? 'cis' : 'trans';
} );
push @graphs, $graph;
}
print join( '.', map { write_SMILES( $_ ) } @graphs ),
"\t",
$name,
"\n";
}
};
if( $@ ) {
$@ =~ s/\n$//;
print STDERR "$basename: $filename: $@\n";
}
}
sub bond_type
{
my( $type ) = @_;
return '=' if $type == 2;
return '#' if $type == 3;
return ':' if $type == 4;
return undef; # TODO: discuss if this is correct
}
|