1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
|
#!/usr/bin/perl
use strict;
use warnings;
use version;
use Algorithm::Combinatorics qw( variations );
use Chemistry::Atom qw( angle_deg dihedral_deg );
use Chemistry::File::SDF;
use Chemistry::Mol;
use Chemistry::OpenSMILES qw(
%normal_valence
clean_chiral_centers
is_chiral
is_chiral_planar
is_triple_bond
mirror
);
use Chemistry::OpenSMILES qw( is_double_bond );
use Chemistry::OpenSMILES::Stereo qw( chirality_to_pseudograph mark_all_double_bonds );
use Chemistry::OpenSMILES::Writer qw( write_SMILES );
use File::Basename qw( basename );
use Getopt::Long::Descriptive;
use Graph::Nauty qw( orbits );
use Graph::Traversal::DFS;
use Graph::Undirected;
use List::Util qw( all any first max min none sum sum0 );
use SmilesScripts::Chirality qw( chiral_volume square_planar trigonal_bipyramidal );
my $default_planarity_threshold = 1e-6;
my %bond_order = (
'-' => 1,
'=' => 2,
'#' => 3,
'$' => 4,
);
# Extracted from symmetry.hpp file of the gemmi project. For more information see:
#
# https://github.com/project-gemmi/gemmi/blob/2d25148dc3ed39adc19422f64be76d7ba6dca2f4/include/gemmi/symmetry.hpp#L912
my @sohncke_groups = qw(
1 3 4 5 16 17 18 19 20 21 22 23 24 75 76 77 78
79 80 89 90 91 92 93 94 95 96 97 98 143 144 145 146 149
150 151 152 153 154 155 168 169 170 171 172 173 177 178 179 180 181
182 195 196 197 198 199 207 208 209 210 211 212 213 214
);
my $basename = basename $0;
my( $opt, $usage ) = describe_options( <<"END" . 'OPTIONS',
USAGE
$basename [<args>] [<files>]
DESCRIPTION
$basename converts SDF files into SMILES.
END
[ 'convert-type-8-bonds-to-covalent',
'convert all type 8 bonds to single covalent bonds' ],
[ 'no-adjust-charges',
'do not adjust atom charges when converting type 8 bonds' ],
[ 'no-estimate-attached-hydrogens',
'do not estimate the number of attached hydrogens' ],
[],
[ tetrahedral_chiral_method => hidden => {
one_of => [
[ 'ignore-flat-tetrahedra' =>
'when considering tetrahedral chiral centers, ignore ' .
'flat tetrahedra (based on volume threshold) [default]' ],
[ 'require-tetrahedral-angles' =>
'when considering tetrahedral chiral centers, ignore ' .
'tetrahedra with average bond angle far from 109.5 degrees' ],
],
default => 'ignore_flat_tetrahedra'
}
],
[ 'planarity-threshold=f',
'planarity volume threshold in cubic angstroms; tetrahedra with ' .
'chiral volume less or equal to the given one will be understood ' .
"as flat [default: $default_planarity_threshold]",
{ default => $default_planarity_threshold } ],
[ 'normalise-vectors',
'normalise vectors used for chiral volume calculation' ],
[],
[ 'mark-square-planar-centers',
'mark chirality in square planar centers' ],
[],
[ 'no-generate-racemates',
'do not attempt to fully represent racemates in non-Sohncke space groups' ],
[],
[ 'remove-excess-stereochemistry',
'remove excess stereochemistry settings (experimental)' ],
[],
[ 'help', 'print usage message and exit', { shortcircuit => 1 } ],
);
if( $opt->help ) {
print $usage->text;
exit;
}
@ARGV = ( '-' ) unless @ARGV;
Chemistry::Mol->register_format( sdf => Chemistry::File::SDF:: );
# Perl Clone module does native cloning, thus it should be able to handle
# larger molecules than the default Storable cloner.
$Chemistry::Mol::clone_backend = 'Clone';
if( $opt->remove_excess_stereochemistry &&
version->parse( $Chemistry::OpenSMILES::VERSION ) < version->parse( '0.8.6' ) ) {
print STDERR "${basename}:: WARNING, Chemistry::OpenSMILES versions before 0.8.6 " .
'remove chiral markers from anomers.', "\n";
}
foreach my $filename (@ARGV) {
local $SIG{__WARN__} = sub {
print STDERR "$basename: $filename: $_[0]"
};
eval {
my $reader = Chemistry::Mol->file( $filename, format => 'sdf' );
$reader->open( '<' );
while( my $molecule = $reader->read_mol( $reader->fh ) ) {
# Convert [C-]#[O+] -> [C]#[O]
# See https://projects.ibt.lt/repositories/issues/1621 for justification
my @atoms_without_H;
for my $bond ($molecule->bonds) {
next unless $bond->type == 3;
my( $C, $O ) = sort { $a->symbol cmp $b->symbol } $bond->atoms;
next unless $C->symbol eq 'C';
next unless $O->symbol eq 'O';
next unless $C->formal_charge == -1;
next unless $O->formal_charge == 1;
next unless all { $_->type == 8 } ( $C->bonds($O), $O->bonds($C) );
$C->formal_charge(0);
$O->formal_charge(0);
push @atoms_without_H, $C;
}
# Resolving the issue with bonds of order 8
my @type_8_bonds;
for my $bond ($molecule->bonds) {
next unless $bond->type == 8;
push @type_8_bonds, $bond;
if( $opt->convert_type_8_bonds_to_covalent ) {
$bond->type(1);
}
if( grep { !$_->formal_charge } $bond->atoms ) {
$bond->type(1) if !$opt->convert_type_8_bonds_to_covalent;
next;
}
my @atoms = sort { $a->formal_charge <=>
$b->formal_charge } $bond->atoms;
next unless $atoms[0]->formal_charge < 0 &&
$atoms[1]->formal_charge > 0;
my $min_abs_charge = min -$atoms[0]->formal_charge,
$atoms[1]->formal_charge;
if( $opt->convert_type_8_bonds_to_covalent ) {
next if $opt->no_adjust_charges;
# When bond 8 is converted into plain covalent bond,
# charges for both atoms have to be adjusted
$atoms[0]->formal_charge( $atoms[0]->formal_charge +
$min_abs_charge );
$atoms[1]->formal_charge( $atoms[1]->formal_charge -
$min_abs_charge );
} else {
# Replace bond 8 with a single bond if both of the atoms
# have opposite charges and decrease the charges by 1.
# Further increase the bond order if both of the atoms
# still have opposing charges.
# TODO: Not sure what to do with bond orders higher than 3.
my $bond_type = $bond->type == 8 ? 0 : $bond->type;
my $bond_type_new = min $bond_type + $min_abs_charge, 3;
next if $bond_type >= $bond_type_new;
$bond->type( $bond_type_new );
next if $opt->no_adjust_charges;
$atoms[0]->formal_charge( $atoms[0]->formal_charge +
($bond_type_new - $bond_type) );
$atoms[1]->formal_charge( $atoms[1]->formal_charge -
($bond_type_new - $bond_type) );
# TODO: What to do when both charges are of the same sign?
}
}
my $name = $molecule->name;
my @graphs;
for my $moiety ($molecule->separate) {
my %atoms;
my %atom_by_vertex;
my $graph = Graph::Undirected->new( refvertexed => 1 );
my @atoms = $moiety->atoms;
# First pass through atoms to add them to molecular graph
for my $i (0..$#atoms) {
my $atom = $atoms[$i];
my $vertex = {
charge => $atom->formal_charge,
number => $i,
symbol => $atom->symbol,
};
my $most_common_isotope =
Chemistry::Atom->new( symbol => $atom->symbol );
if( $most_common_isotope->mass != $atom->mass ) {
$vertex->{isotope} = sprintf( '%.0f', $atom->mass ) + 0;
}
if( any { $_ eq $atom } @atoms_without_H ) {
$vertex->{hcount} = 0;
}
$graph->add_vertex( $vertex );
$atoms{$atom} = $vertex;
$atom_by_vertex{$vertex} = $atom;
}
# Second pass through atoms to set chirality
for my $i (0..$#atoms) {
my $atom = $atoms[$i];
my $vertex = $atoms{$atom};
my @neighbours = $atom->neighbors;
my $hydrogens = grep { $_->symbol eq 'H' &&
scalar $_->neighbors == 1 }
@neighbours;
if( @neighbours == 4 && $hydrogens <= 1 ) {
# Tetrahedral chiral and square planar centers
my $volume = chiral_volume( @neighbours, $opt->normalise_vectors );
if( $opt->tetrahedral_chiral_method eq 'ignore_flat_tetrahedra' ) {
if( abs $volume > $opt->planarity_threshold ) {
$vertex->{chirality} = $volume < 0 ? '@' : '@@';
} else {
next unless $opt->mark_square_planar_centers;
$vertex->{chirality} =
square_planar( map { [ $_->coords->array ] } $atom, @neighbours );
}
} else {
my $angle = sum angle_deg( $neighbours[0], $atom, $neighbours[1] ),
angle_deg( $neighbours[0], $atom, $neighbours[2] ),
angle_deg( $neighbours[0], $atom, $neighbours[3] ),
angle_deg( $neighbours[1], $atom, $neighbours[2] ),
angle_deg( $neighbours[1], $atom, $neighbours[3] ),
angle_deg( $neighbours[2], $atom, $neighbours[3] );
if( abs( $angle / 6 - 109.5 ) <= 5 ) {
$vertex->{chirality} = $volume < 0 ? '@' : '@@';
} else {
next unless $opt->mark_square_planar_centers;
$vertex->{chirality} =
square_planar( map { [ $_->coords->array ] } $atom, @neighbours );
}
}
$vertex->{chirality_neighbours} =
[ map { $atoms{$_} } @neighbours ];
} elsif( @neighbours == 5 && $hydrogens <= 1 ) {
# Trigonal bipyramidal centers
my @pairs = variations( \@neighbours, 2 );
my @angles = map { angle_deg( $_->[0], $atom, $_->[1] ) } @pairs;
@pairs = map { $pairs[$_] }
sort { $angles[$b] <=> $angles[$a] } 0..$#pairs;
@angles = sort { $b <=> $a } @angles;
next unless $angles[0] > 170; # largest angle should be close to 180
# TODO: Check for planarity maybe
next; # TODO: Implement
$vertex->{chirality} =
trigonal_bipyramidal( map { [ $_->coords->array ] } $atom, @neighbours );
$vertex->{chirality_neighbours} =
[ map { $atoms{$_} }
$pairs[0]->[0],
( grep { $_ != $pairs[0]->[0] &&
$_ != $pairs[0]->[1] } @neighbours ),
$pairs[0]->[1] ];
}
}
# First pass through bonds to set them as given in SDF
for my $bond ($moiety->bonds) {
my $type = bond_type( $bond->type );
if( $type ) {
$graph->set_edge_attribute(
map( { $atoms{$_} } $bond->atoms ),
'bond',
$type );
} else {
$graph->add_edge(
map { $atoms{$_} } $bond->atoms );
}
}
# Second pass through bonds to find cis/trans bonds
my @cis_trans_bonds;
for my $bond ($moiety->bonds) {
my @atoms = map { $atoms{$_} } $bond->atoms;
next unless is_double_bond( $graph, @atoms );
my @atoms1 = sort { $a->{number} <=> $b->{number} }
grep { $_ != $atoms[1] }
$graph->neighbours( $atoms[0] );
my @atoms4 = sort { $a->{number} <=> $b->{number} }
grep { $_ != $atoms[0] }
$graph->neighbours( $atoms[1] );
next unless @atoms1 && @atoms4;
next if @atoms1 > 2 || @atoms4 > 2;
@atoms = ( shift @atoms1, @atoms, shift @atoms4 );
my $angle = dihedral_deg( map { $atom_by_vertex{$_} } @atoms );
push @cis_trans_bonds, [ @atoms, abs $angle < 90 ? 'cis' : 'trans' ];
}
# Third pass through atoms to add the attached hydrogens
if( exists $molecule->attr('sdf/data')->{COD_SDF_ATTACHED_HYDROGEN_ATOMS} ) {
my @atoms_in_molecule = $molecule->atoms;
for (@{$molecule->attr('sdf/data')->{COD_SDF_ATTACHED_HYDROGEN_ATOMS}}) {
my( $atom_id, $implicit_hydrogens ) = split /\s+/, $_;
next unless any { $_ eq $atoms_in_molecule[$atom_id-1] } @atoms;
$atoms{$atoms_in_molecule[$atom_id-1]}->{hcount} = int $implicit_hydrogens;
}
}
# Fourth pass through atoms to preserve unusual valencies.
# This should be done by Chemistry::OpenSMILES, but is not
# (https://github.com/merkys/Chemistry-OpenSMILES/issues/6).
# The current workaround is rather hackish: atoms that have
# unusual valences are marked as having SMILES class 1,
# which is later removed with a simple regular expression.
for my $atom ($graph->vertices) {
next unless exists $normal_valence{$atom->{symbol}};
my $charge = $atom->{charge} ? $atom->{charge} : 0;
my $valence = -$charge +
($atom_by_vertex{$atom}->formal_radical &&
$atom_by_vertex{$atom}->formal_radical > 1
? $atom_by_vertex{$atom}->formal_radical - 1 : 0);
my $participates_in_8_bond;
for my $neighbour ($graph->neighbors( $atom )) {
# If charges were not adjusted and this was an order 8
# bond, it should not be included in valence counting.
if( $opt->no_adjust_charges &&
grep { $_->[0] eq $atom_by_vertex{$atom} ||
$_->[1] eq $atom_by_vertex{$atom} }
grep { $_->[0] eq $atom_by_vertex{$neighbour} ||
$_->[1] eq $atom_by_vertex{$neighbour} }
map { [ $_->atoms ] } @type_8_bonds ) {
$participates_in_8_bond = 1;
next;
}
if( $graph->has_edge_attribute( $atom, $neighbour, 'bond' ) ) {
$valence += $bond_order{$graph->get_edge_attribute( $atom, $neighbour, 'bond' )};
} else {
$valence++;
}
}
my $normal_valence = first { $_ >= $valence }
sort @{$normal_valence{$atom->{symbol}}};
# In SDF files generated in 'molecules-in-COD' project,
# positively charged C atoms usually denote the additional
# positive charge in aromatic rings. Therefore, H atoms
# are not added for such atoms.
if( !$opt->no_estimate_attached_hydrogens &&
$normal_valence &&
( $atom->{symbol} ne 'C' || $charge <= 0 ) &&
!exists $atom->{hcount} ) {
$atom->{hcount} = $normal_valence - $valence;
}
if( !$normal_valence ||
$participates_in_8_bond ||
($atom_by_vertex{$atom}->formal_radical && $atom_by_vertex{$atom}->formal_radical > 1) ) {
$atom->{class} = 1;
}
}
# Remove superfluous cis/trans and chirality settings (experimental)
if( $opt->remove_excess_stereochemistry ) {
my $copy = $graph->copy;
chirality_to_pseudograph( $copy );
my @orbits = orbits( $copy,
sub { ref $_[0] && exists $_[0]->{symbol} ? &write_SMILES : '' } );
my $color_sub = sub {
for my $i (0..$#orbits) {
return $i if any { $_ == $_[0] } @{$orbits[$i]};
}
};
# WARNING: The following code does not work as expected with Chemistry::OpenSMILES v0.8.5 or earlier.
# There is a safeguard which throws a warning in this script.
mark_all_double_bonds( $graph, \@cis_trans_bonds, undef, $color_sub );
clean_chiral_centers( $graph, $color_sub );
} else {
mark_all_double_bonds( $graph, \@cis_trans_bonds );
}
# Detect chiral molecular entities in non-Sohncke space groups.
# If a molecular entity has a single chiral center in a non-Sohncke space groups, it is removed.
# Otherwise the molecule is duplicated with chiral marks inverted.
# Chiral planar centers are ignored as they are immune to mirror transformation.
if( !$opt->no_generate_racemates &&
exists $molecule->attr('sdf/data')->{COD_SDF_SPACE_GROUP_IT_NUMBER} &&
( none { $molecule->attr('sdf/data')->{COD_SDF_SPACE_GROUP_IT_NUMBER} == $_ } @sohncke_groups ) &&
( any { is_chiral $_ && !is_chiral_planar $_ } $graph->vertices ) ) {
my $number_of_chiral_atoms = grep { is_chiral $_ && !is_chiral_planar $_ }
$graph->vertices;
push @graphs, $graph if $number_of_chiral_atoms > 1;
my $graph = $graph->deep_copy;
for my $atom ($graph->vertices) {
next unless is_chiral $atom;
next if is_chiral_planar $atom;
if( $number_of_chiral_atoms == 1 ) {
delete $atom->{chirality};
delete $atom->{chirality_neighbours};
} else {
mirror $atom;
}
}
push @graphs, $graph;
} else {
push @graphs, $graph;
}
}
print join( '.', map { $_ = write_SMILES( $_ ); s/:1\]/\]/g; $_ } @graphs ),
"\t",
$name,
"\n";
}
};
if( $@ ) {
$@ =~ s/\n$//;
print STDERR "$basename: $filename: $@\n";
}
}
sub bond_type
{
my( $type ) = @_;
return '=' if $type == 2;
return '#' if $type == 3;
return ':' if $type == 4;
return undef; # TODO: discuss if this is correct
}
|