File: boot.c

package info (click to toggle)
smlnj-runtime 110.44-2
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 2,968 kB
  • ctags: 5,368
  • sloc: ansic: 24,674; asm: 4,195; makefile: 1,353; sh: 91
file content (599 lines) | stat: -rw-r--r-- 18,791 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
/* boot.c
 *
 * COPYRIGHT (c) 1993 by AT&T Bell Laboratories.
 *
 * This is the bootstrap loader for booting from .bin files.
 */

#include "ml-osdep.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include "ml-base.h"
#include "ml-limits.h"
#include "cache-flush.h"
#include "bin-file.h"
#include "ml-objects.h"
#include "gc.h"
#include "ml-globals.h"

#ifndef SEEK_SET
#  define SEEK_SET	0
#endif

/* The persistent ID list is stored in the PervStruct refcell.  It has
 * the following ML type:
 *
 *    datatype runDynEnv
 *      = NILrde
 *      | CONSrde of (Word8Vector.vector * Object.object * runDynEnv)
 */
#define PerIDList	(*PTR_MLtoC(ml_val_t, PervStruct))

PVT ml_val_t	BinFileList = LIST_nil;	/* A list of bin files to load */


/* local routines */
PVT ml_val_t BuildFileList (ml_state_t *msp, const char *bootlist,
			    int *max_boot_path_len_ptr);
PVT FILE *OpenBinFile (const char *fname, bool_t isBinary);
PVT void ReadBinFile (FILE *file, void *buf, int nbytes, const char *fname);
PVT void LoadBinFile (ml_state_t *msp, char *fname);
PVT void EnterPerID (ml_state_t *msp, pers_id_t *perID, ml_val_t obj);
PVT ml_val_t LookupPerID (pers_id_t *perID);
PVT void ShowPerID (char *buf, pers_id_t *perID);

# define HEX(c) (isdigit(c) ? (c) - '0' : (c) - 'a' + 10)

/* BootML:
 *
* Boot the system using the items read from the "bootlist" file.
*/
void BootML (const char *bootlist, heap_params_t *heapParams)
{
    ml_state_t	*msp;
    int         max_boot_path_len;
    char	*fname;
    int         rts_init = 0;

    msp = AllocMLState (TRUE, heapParams);

#ifdef HEAP_MONITOR
    if (HeapMon_Init(CmdLineArgs, msp->ml_heap) == FAILURE)
	Die("unable to start heap monitor");
#endif

    InitFaultHandlers ();
    AllocGlobals (msp);

  /* construct the list of files to be loaded */
    BinFileList = BuildFileList (msp, bootlist, &max_boot_path_len);

  /* this space is ultimately wasted */
    if ((fname = MALLOC (max_boot_path_len)) == NULL)
	Die ("unable to allocate space for boot file names");

  /* boot the system */
    while (BinFileList != LIST_nil) {
      /* need to make a copy of the path name because LoadBinFile is
       * going to scribble into it */
	strcpy(fname, STR_MLtoC(LIST_hd(BinFileList)));
	BinFileList = LIST_tl(BinFileList);
	if (fname[0] == '#') {
	    if (rts_init)
		Die ("runtime system registered more than once\n");
	    else {
	      /* register the runtime system under the given pers id */
		pers_id_t pid;
		int i, l = strlen (fname + 1);
		for (i = 0; i < PERID_LEN; i++) {
		    int i2 = 2 * i;
		    if (i2 + 1 < l) {
			int c1 = fname[i2+1];
			int c2 = fname[i2+2];
			pid.bytes[i] = (HEX(c1) << 4) + HEX(c2);
		    }
		}
		if (!SilentLoad)
		    Say ("[Registering runtime system as %s]\n", fname+1);
		EnterPerID (msp, &pid, RunTimeCompUnit);
		rts_init = 1;	/* make sure we do this only once */
	    }
	}
	else
	    LoadBinFile (msp, fname);
    }

} /* end of BootML */


/* BuildFileList:
 *
 * Given the directory path, build a list of the .bin files in the
 * heap.
 */
PVT ml_val_t BuildFileList (ml_state_t *msp, const char *bootlist, int *mbplp)
{
    FILE	*listF;
    ml_val_t	*fileNames = NULL;
    char	*nameBuf = NULL;
    int         max_num_boot_files = MAX_NUM_BOOT_FILES;
    int         max_boot_path_len = MAX_BOOT_PATH_LEN;
    int		i, j, numFiles;
    ml_val_t	fileList;
# define SIZE_BUF_LEN	128	/* this should be plenty for two numbers */
    char        sizeBuf[SIZE_BUF_LEN];
    char        c;

    numFiles = 0;

    listF = OpenBinFile (bootlist, FALSE);

    if (listF != NULL) {
	c = getc (listF);
	if (c == EOF)
	    Die ("bootlist file \"%s\" is empty", bootlist);
	if (c == '%') {
	    if (fgets (sizeBuf, SIZE_BUF_LEN, listF) != NIL(char *)) {
	      /* hardly any checking here... */
		char *space = strchr (sizeBuf, ' ');
		*space = '\0';
		max_num_boot_files = strtoul(sizeBuf, NULL, 0);
		max_boot_path_len = strtoul(space+1, NULL, 0) + 2;
	    }
	    else
		Die ("unable to read first line in \"%s\" after %%", bootlist);
	}
	else {
	  /* size spec is missing -- use defaults */
	    ungetc (c, listF);
	}

	*mbplp = max_boot_path_len; /* tell the calling function... */

	if ((nameBuf = MALLOC(max_boot_path_len)) == NIL(char *))
	    Die ("unable to allocate space for boot file names");

	if ((fileNames = MALLOC(max_num_boot_files * sizeof(char *))) == NULL)
	    Die ("unable to allocate space for boot file name table");

      /* read in the file names, converting them to ML strings. */
	while (fgets (nameBuf, max_boot_path_len, listF) != NIL(char *)) {
	    j = strlen(nameBuf)-1;
	    if (nameBuf[j] == '\n') nameBuf[j] = '\0';	/* remove "\n" */
	    if (numFiles < max_num_boot_files)
		fileNames[numFiles++] = ML_CString(msp, nameBuf);
	    else
		Die ("too many files\n");
	}
	fclose (listF);
    }

  /* create the in-heap list */
    for (fileList = LIST_nil, i = numFiles;  --i >= 0; ) {
	LIST_cons(msp, fileList, fileNames[i], fileList);
    }

    /* these guys are no longer needed from now on */
    if (fileNames)
	FREE (fileNames);
    if (nameBuf)
	FREE (nameBuf);

    return fileList;

} /* end of BuildFileList */


/* OpenBinFile:
 *
 * Open a file in the bin file directory.
 */
PVT FILE *OpenBinFile (const char *fname, bool_t isBinary)
{
    FILE	*file;

    if ((file = fopen (fname, isBinary ? "rb" : "r")) == NULL)
	Error ("unable to open \"%s\"\n", fname);

    return file;

} /* end of OpenBinFile */

/*
 * BINFILE FORMAT description:
 *
*************** The following really belongs in the header file ****************
 *  Every 4-byte integer field is stored in big-endian format.
 *
 *       Start Size Purpose
 * ----BEGIN OF HEADER----
 *            0 16  magic string
 *           16  4  number of import values (importCnt)
 *           20  4  number of exports (exportCnt = currently always 0 or 1)
 *           24  4  size of import tree area in bytes (importSzB)
 *           28  4  size of CM-specific info in bytes (cmInfoSzB)
 *           32  4  size of pickled lambda-expression in bytes (lambdaSzB)
 *           36  4  size of reserved area in bytes (reserved)
 *           40  4  size of padding area in bytes (pad)
 *           44  4  size of code area in bytes (codeSzB)
 *           48  4  size of pickled environment in bytes (envSzB)
 *           52  i  import trees [This area contains pickled import trees --
 *                    see below.  The total number of leaves in these trees is
 *                    importCnt.  The size impSzB of this area depends on the
 *                    shape of the trees.]
 *         i+52 ex  export pids [Each export pid occupies 16 bytes. Thus, the
 *                    size ex of this area is 16*exportCnt (0 or 16).]
 *      ex+i+52 cm  CM info [Currently a list of pid-pairs.] (cm = cmInfoSzB)
 * ----END OF HEADER----
 *            0  h  HEADER (h = 52+cm+ex+i)
 *            h  l  pickle of exported lambda-expr. (l = lambdaSzB)
 *          l+h  r  reserved area (r = reserved)
 *        r+l+h  p  padding (p = pad)
 *      p+r+l+h  c  code area (c = codeSzB) [Structured into several
 *                    segments -- see below.]
 *    c+p+r+l+h  e  pickle of static environment (e = envSzB)
 *  e+c+p+r+l+h  -  END OF BINFILE
 *
 * IMPORT TREE FORMAT description:
 *
 *  The import tree area contains a list of (pid * tree) pairs.
 *  The pids are stored directly as 16-byte strings.
 *  Trees are constructed according to the following ML-datatype:
 *    datatype tree = NODE of (int * tree) list
 *  Leaves in this tree have the form (NODE []).
 *  Trees are written recursively -- (NODE l) is represented by n (= the
 *  length of l) followed by n (int * node) subcomponents.  Each component
 *  consists of the integer selector followed by the corresponding tree.
 *
 *  The size of the import tree area is only given implicitly. When reading
 *  this area, the reader must count the number of leaves and compare it
 *  with importCnt.
 *
 *  Integer values in the import tree area (lengths and selectors) are
 *  written in "packed" integer format. In particular, this means that
 *  Values in the range 0..127 are represented by only 1 byte.
 *  Conceptually, the following pickling routine is used:
 *
 *    void recur_write_ul (unsigned long l, FILE *file)
 *    {
 *        if (l != 0) {
 *            recur_write_ul (l >> 7, file);
 *            putc ((l & 0x7f) | 0x80, file);
 *        }
 *    }
 *
 *    void write_ul (unsigned long l, FILE *file)
 *    {
 *        recur_write_ul (l >> 7, file);
 *        putc (l & 0x7f, file);
 *    }
 *
 * CODE AREA FORMAT description:
 *
 *  The code area contains multiple code segements.  There will be at least
 *  two.  The very first segment is the "data" segment -- responsible for
 *  creating literal constants on the heap.  The idea is that code in the
 *  data segment will be executed only once at link-time. Thus, it can
 *  then be garbage-collected immediatly. (In the future it is possible that
 *  the data segment will not contain executable code at all but some form
 *  of bytecode that is to be interpreted separately.)
 *
 *  In the binfile, each code segment is represented by its size s and its
 *  entry point offset (in bytes -- written as 4-byte big-endian integers)
 *  followed by s bytes of machine- (or byte-) code. The total length of all
 *  code segments (including the bytes spent on representing individual sizes
 *  and entry points) is codeSzB.  The entrypoint field for the data segment
 *  is currently ignored (and should be 0).
 *
 * LINKING CONVENTIONS:
 *
 *  Linking is achieved by executing all code segments in sequential order.
 *
 *  The first code segment (i.e., the "data" segment) receives unit as
 *  its single argument.
 *
 *  The second code segment receives a record as its single argument.
 *  This record has (importCnt+1) components.  The first importCnt
 *  components correspond to the leaves of the import trees.  The final
 *  component is the result from executing the data segment.
 *
 *  All other code segments receive a single argument which is the result
 *  of the preceding segment.
 *
 *  The result of the last segment represents the exports of the compilation
 *  unit.  It is to be paired up with the export pid and stored in the
 *  dynamic environment.  If there is no export pid, then the final result
 *  will be thrown away.
 *
 *  The import trees are used for constructing the argument record for the
 *  second code segment.  The pid at the root of each tree is the key for
 *  looking up a value in the existing dynamic environment.  In general,
 *  that value will be a record.  The selector fields of the import tree
 *  associated with the pid are used to recursively fetch components of that
 *  record.
 */

/* ReadBinFile:
 */
PVT void ReadBinFile (FILE *file, void *buf, int nbytes, const char *fname)
{
    if (fread(buf, nbytes, 1, file) == -1)
	Die ("cannot read file \"%s\"", fname);

} /* end of ReadBinFile */

/* ReadPackedInt32:
 *
 * Read an integer in "packed" format.  (Small numbers only require 1 byte.)
 */
PVT Int32_t ReadPackedInt32 (FILE *file, const char *fname)
{
    Unsigned32_t	n;
    Byte_t		c;

    n = 0;
    do {
	ReadBinFile (file, &c, sizeof(c), fname);
	n = (n << 7) | (c & 0x7f);
    } while ((c & 0x80) != 0);

    return ((Int32_t)n);

} /* end of ReadPackedInt32 */

/* ImportSelection:
 *
 * Select out the interesting bits from the imported object.
 */
PVT void ImportSelection (ml_state_t *msp, FILE *file, const char *fname,
			  int *importVecPos, ml_val_t tree)
{
    Int32_t cnt = ReadPackedInt32 (file, fname);
    if (cnt == 0) {
	ML_AllocWrite (msp, *importVecPos, tree);
	(*importVecPos)++;
    }
    else {
	while (cnt-- > 0) {
	    Int32_t selector = ReadPackedInt32 (file, fname);
	    ImportSelection (msp, file, fname, importVecPos,
			     REC_SEL(tree, selector));
	}
    }

} /* end of ImportSelection */

/* LoadBinFile:
 */
PVT void LoadBinFile (ml_state_t *msp, char *fname)
{
    FILE	    *file;
    int		    i, remainingCode, importRecLen;
    int             exportSzB = 0;
    ml_val_t	    codeObj, importRec, closure, val;
    binfile_hdr_t   hdr;
    pers_id_t	    exportPerID;
    Int32_t         thisSzB, thisEntryPoint;
    size_t          archiveOffset;
    char            *atptr, *colonptr;
    char            *objname = fname;
    

    if ((atptr = strchr (fname, '@')) == NULL)
	archiveOffset = 0;
    else {
	if ((colonptr = strchr (atptr + 1, ':')) != NULL) {
	    objname = colonptr + 1;
	    *colonptr = '\0';
	}
      /* not a lot of extensive checking here... */
	archiveOffset = strtoul (atptr + 1, NULL, 0);
	*atptr = '\0';
    }

    if (!SilentLoad)
      Say ("[Loading %s]\n", objname);

  /* open the file */
    file = OpenBinFile (fname, TRUE);
    if (file == NULL)
	Exit (1);

  /* if an offset is given (i.e., we are probably dealing with a stable
   * archive), then seek to the beginning of the section that contains
   * the binfile
   */
    if (archiveOffset != 0) {
	if (fseek (file, archiveOffset, SEEK_SET) == -1)
	    Die ("cannot seek on archive file \"%s@%ul\"",
		 fname, (unsigned long) archiveOffset);
    }

  /* get the header */
    ReadBinFile (file, &hdr, sizeof(binfile_hdr_t), fname);

  /* get header byte order right */
    hdr.importCnt	= BIGENDIAN_TO_HOST(hdr.importCnt);
    hdr.exportCnt	= BIGENDIAN_TO_HOST(hdr.exportCnt);
    hdr.importSzB	= BIGENDIAN_TO_HOST(hdr.importSzB);
    hdr.cmInfoSzB	= BIGENDIAN_TO_HOST(hdr.cmInfoSzB);
    hdr.lambdaSzB	= BIGENDIAN_TO_HOST(hdr.lambdaSzB);
    hdr.reserved	= BIGENDIAN_TO_HOST(hdr.reserved);
    hdr.pad             = BIGENDIAN_TO_HOST(hdr.pad);
    hdr.codeSzB		= BIGENDIAN_TO_HOST(hdr.codeSzB);
    hdr.envSzB		= BIGENDIAN_TO_HOST(hdr.envSzB);

  /* read the import PerIDs, and create the import vector */
    {
	int	importVecPos;

	importRecLen = hdr.importCnt + 1;

	if (NeedGC (msp, REC_SZB(importRecLen)))
	    InvokeGCWithRoots (msp, 0, &BinFileList, NIL(ml_val_t *));

	ML_AllocWrite (msp, 0, MAKE_DESC(importRecLen, DTAG_record));
	for (importVecPos = 1; importVecPos < importRecLen; ) {
	    pers_id_t	importPid;
	    ReadBinFile (file, &importPid, sizeof(pers_id_t), fname);
	    ImportSelection (msp, file, fname, &importVecPos,
			     LookupPerID(&importPid));
	}
	ML_AllocWrite(msp, importRecLen, ML_nil);
	importRec = ML_Alloc(msp, importRecLen);
    }

  /* read the export PerID */
    if (hdr.exportCnt == 1) {
	exportSzB = sizeof(pers_id_t);
	ReadBinFile (file, &exportPerID, exportSzB, fname);
    }
    else if (hdr.exportCnt != 0)
	Die ("# of export pids is %d (should be 0 or 1)", (int)hdr.exportCnt);

  /* seek to code section */
    {
	long	    off = archiveOffset
	                + sizeof(binfile_hdr_t)
			+ hdr.importSzB
	                + exportSzB
	                + hdr.cmInfoSzB
			+ hdr.lambdaSzB
			+ hdr.reserved
	                + hdr.pad;

	if (fseek(file, off, SEEK_SET) == -1)
	    Die ("cannot seek on bin file \"%s\"", fname);
    }

  /* Read code objects and run them.  The first code object will be the
   * data segment.  */

    remainingCode = hdr.codeSzB;

  /* read the size and the dummy entry point for the data object */
    ReadBinFile (file, &thisSzB, sizeof(Int32_t), fname);
    thisSzB = BIGENDIAN_TO_HOST(thisSzB);
    ReadBinFile (file, &thisEntryPoint, sizeof(Int32_t), fname);
    /* thisEntryPoint = BIGENDIAN_TO_HOST(thisEntryPoint); */

    remainingCode -= thisSzB + 2 * sizeof(Int32_t);
    if (remainingCode < 0)
	Die ("format error (data size mismatch) in bin file \"%s\"", fname);

    if (thisSzB > 0) {
	Byte_t		*dataObj = NEW_VEC(Byte_t, thisSzB);

	ReadBinFile (file, dataObj, thisSzB, fname);
	SaveCState (msp, &BinFileList, &importRec, NIL(ml_val_t *));
	val = BuildLiterals (msp, dataObj, thisSzB);
	FREE(dataObj);
	RestoreCState (msp, &BinFileList, &importRec, NIL(ml_val_t *));
    }
    else {
	val = ML_unit;
    }
  /* do a functional update of the last element of the importRec. */
    for (i = 0;  i < importRecLen;  i++)
	ML_AllocWrite(msp, i, PTR_MLtoC(ml_val_t, importRec)[i-1]);
    ML_AllocWrite(msp, importRecLen, val);
    val = ML_Alloc(msp, importRecLen);
  /* do a GC, if necessary */
    if (NeedGC (msp, PERID_LEN+REC_SZB(5)))
	InvokeGCWithRoots (msp, 0, &BinFileList, &val, NIL(ml_val_t *));

    while (remainingCode > 0) {

      /* read the size and entry point for this code object */
	ReadBinFile (file, &thisSzB, sizeof(Int32_t), fname);
	thisSzB = BIGENDIAN_TO_HOST(thisSzB);
	ReadBinFile (file, &thisEntryPoint, sizeof(Int32_t), fname);
	thisEntryPoint = BIGENDIAN_TO_HOST(thisEntryPoint);

      /* how much more? */
	remainingCode -= thisSzB + 2 * sizeof(Int32_t);
	if (remainingCode < 0)
	  Die ("format error (code size mismatch) in bin file \"%s\"", fname);

      /* allocate space and read code object */
	codeObj = ML_AllocCode (msp, thisSzB);
	ReadBinFile (file, PTR_MLtoC(char, codeObj), thisSzB, fname);

	FlushICache (PTR_MLtoC(char, codeObj), thisSzB);
      
      /* create closure (taking entry point into account) */
	REC_ALLOC1 (msp, closure,
		    PTR_CtoML (PTR_MLtoC (char, codeObj) + thisEntryPoint));

      /* apply the closure to the import PerID vector */
	SaveCState (msp, &BinFileList, NIL(ml_val_t *));
	val = ApplyMLFn (msp, closure, val, TRUE);
	RestoreCState (msp, &BinFileList, NIL(ml_val_t *));

      /* do a GC, if necessary */
	if (NeedGC (msp, PERID_LEN+REC_SZB(5)))
	    InvokeGCWithRoots (msp, 0, &BinFileList, &val, NIL(ml_val_t *));
    }

  /* record the resulting exported PerID */
    if (exportSzB != 0)
	EnterPerID (msp, &exportPerID, val);

    fclose (file);

} /* end of LoadBinFile */

/* EnterPerID:
 *
 * Enter a PerID/object binding in the heap allocated list of PerIDs.
 */
PVT void EnterPerID (ml_state_t *msp, pers_id_t *perID, ml_val_t obj)
{
    ml_val_t	    mlPerID;

  /* Allocate space for the PerID */
    mlPerID = ML_AllocString (msp, PERID_LEN);
    memcpy (STR_MLtoC(mlPerID), (char *)perID, PERID_LEN);

  /* Allocate the list element */
    REC_ALLOC3(msp, PerIDList, mlPerID, obj, PerIDList);

}

/* LookupPerID:
 */
PVT ml_val_t LookupPerID (pers_id_t *perID)
{
    ml_val_t        p, id;

    for (p = PerIDList;  p != ML_unit;  p = REC_SEL(p, 2)) {
	id = REC_SEL(p, 0);
	if (memcmp((char *)perID, STR_MLtoC(id), PERID_LEN) == 0)
	    return (REC_SEL(p, 1));
    }
    {
	char	buf[64];
	ShowPerID (buf, perID);
	Die ("unable to find PerID %s", buf);
    }
} /* end of LookupPerID */


/* ShowPerID:
 */
PVT void ShowPerID (char *buf, pers_id_t *perID)
{
    char	*cp = buf;
    int		i;

    *cp++ = '[';
    for (i = 0;  i < PERID_LEN;  i++) {
	sprintf (cp, "%02x", perID->bytes[i]);
	cp += 2;
    }
    *cp++ = ']';
    *cp++ = '\0';

} /* end of ShowPerID */