File: malloc.c

package info (click to toggle)
smlnj-runtime 110.44-2
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 2,968 kB
  • ctags: 5,368
  • sloc: ansic: 24,674; asm: 4,195; makefile: 1,353; sh: 91
file content (1206 lines) | stat: -rw-r--r-- 34,778 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
/* 
  A version of malloc/free/realloc written by Doug Lea and released to the 
  public domain. 

  VERSION 2.5

* History:
    Based loosely on libg++-1.2X malloc. (It retains some of the overall 
       structure of old version,  but most details differ.)
    trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
    fixups Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
      * removed potential for odd address access in prev_chunk
      * removed dependency on getpagesize.h
      * misc cosmetics and a bit more internal documentation
      * anticosmetics: mangled names in macros to evade debugger strangeness
      * tested on sparc, hp-700, dec-mips, rs6000 
          with gcc & native cc (hp, dec only) allowing
          Detlefs & Zorn comparison study (to appear, SIGPLAN Notices.)

* Overview

  This malloc, like any other, is a compromised design. 

  Chunks of memory are maintained using a `boundary tag' method as
  described in e.g., Knuth or Standish.  The size of the chunk is
  stored both in the front of the chunk and at the end.  This makes
  consolidating fragmented chunks into bigger chunks very fast.  The
  size field also hold a bit representing whether a chunk is free or
  in use.

  Malloced chunks have space overhead of 8 bytes: The preceding and
  trailing size fields.  When a chunk is freed, 8 additional bytes are
  needed for free list pointers. Thus, the minimum allocatable size is
  16 bytes.  8 byte alignment is currently hardwired into the design.
  This seems to suffice for all current machines and C compilers.
  Calling memalign will return a chunk that is both 8-byte aligned
  and meets the requested (power of two) alignment.

  It is assumed that 32 bits suffice to represent chunk sizes.  The
  maximum size chunk is 2^31 - 8 bytes.  malloc(0) returns a pointer
  to something of the minimum allocatable size.  Requests for negative
  sizes (when size_t is signed) or with the highest bit set (when
  unsigned) will also return a minimum-sized chunk.

  Available chunks are kept in doubly linked lists. The lists are
  maintained in an array of bins using a power-of-two method, except
  that instead of 32 bins (one for each 1 << i), there are 128: each
  power of two is split in quarters.  Chunk sizes up to 128 are
  treated specially; they are categorized on 8-byte boundaries.  This
  both better distributes them and allows for special faster
  processing.

  The use of very fine bin sizes closely approximates the use of one
  bin per actually used size, without necessitating the overhead of
  locating such bins. It is especially desirable in common
  applications where large numbers of identically-sized blocks are
  malloced/freed in some dynamic manner, and then later are all freed.
  The finer bin sizes make finding blocks fast, with little wasted
  overallocation. The consolidation methods ensure that once the
  collection of blocks is no longer useful, fragments are gathered
  into bigger chunks awaiting new roles.

  The bins av[i] serve as heads of the lists. Bins contain a dummy
  header for the chunk lists. Each bin has two lists. The `dirty' list
  holds chunks that have been returned (freed) and not yet either
  re-malloc'ed or consolidated. (A third free-standing list contains
  returned chunks that have not yet been processed at all.) The `clean'
  list holds split-off fragments and consolidated space. All
  procedures maintain the invariant that no clean chunk physically
  borders another clean chunk. Thus, clean chunks never need to be
  scanned during consolidation.

* Algorithms

  Malloc:

    This is a very heavily disguised first-fit algorithm.
    Most of the heuristics are designed to maximize the likelihood
    that a usable chunk will most often be found very quickly,
    while still minimizing fragmentation and overhead.

    The allocation strategy has several phases:

      0. Convert the request size into a usable form. This currently
         means to add 8 bytes overhead plus possibly more to obtain
         8-byte alignment. Call this size `nb'.

      1. Check if the last returned (free()'d) or preallocated chunk
         is of the exact size nb. If so, use it.  `Exact' means no
         more than MINSIZE (currently 16) bytes larger than nb. This
         cannot be reduced, since a chunk with size < MINSIZE cannot
         be created to hold the remainder.

         This check need not fire very often to be effective.  It
         reduces overhead for sequences of requests for the same
         preallocated size to a dead minimum.

      2. Look for a dirty chunk of exact size in the bin associated
         with nb.  `Dirty' chunks are those that have never been
         consolidated.  Besides the fact that they, but not clean
         chunks require scanning for consolidation, these chunks are
         of sizes likely to be useful because they have been
         previously requested and then freed by the user program.

         Dirty chunks of bad sizes (even if too big) are never used
         without consolidation. Among other things, this maintains the
         invariant that split chunks (see below) are ALWAYS clean.

         2a If there are dirty chunks, but none of the right size,
             consolidate them all, as well as any returned chunks
             (i.e., the ones from step 3). This is all a heuristic for
             detecting and dealing with excess fragmentation and
             random traversals through memory that degrade
             performance especially when the user program is running
             out of physical memory.

      3. Pull other requests off the returned chunk list, using one if
         it is of exact size, else distributing into the appropriate
         bins.

      4. Try to use the last chunk remaindered during a previous
         malloc. (The ptr to this chunk is kept in var last_remainder,
         to make it easy to find and to avoid useless re-binning
         during repeated splits.  The code surrounding it is fairly
         delicate. This chunk must be pulled out and placed in a bin
         prior to any consolidation, to avoid having other pointers
         point into the middle of it, or try to unlink it.) If
         it is usable, proceed to step 9.

      5. Scan through clean chunks in the bin, choosing any of size >=
         nb. Split later (step 9) if necessary below.  (Unlike in step
         2, it is good to split here, because it creates a chunk of a
         known-to-be-useful size out of a fragment that happened to be
         close in size.)

      6. Scan through the clean lists of all larger bins, selecting
         any chunk at all. (It will surely be big enough since it is
         in a bigger bin.)  The scan goes upward from small bins to
         large.  It would be faster downward, but could lead to excess
         fragmentation. If successful, proceed to step 9.

      7. Consolidate chunks in other dirty bins until a large enough
         chunk is created. Break out to step 9 when one is found.

         Bins are selected for consolidation in a circular fashion
         spanning across malloc calls. This very crudely approximates
         LRU scanning -- it is an effective enough approximation for
         these purposes.

      8. Get space from the system using sbrk.

         Memory is gathered from the system (via sbrk) in a way that
         allows chunks obtained across different sbrk calls to be
         consolidated, but does not require contiguous memory. Thus,
         it should be safe to intersperse mallocs with other sbrk
         calls.

      9. If the selected chunk is too big, then:

         9a If this is the second split request for nb bytes in a row,
             use this chunk to preallocate up to MAX_PREALLOCS
             additional chunks of size nb and place them on the
             returned chunk list.  (Placing them here rather than in
             bins speeds up the most common case where the user
             program requests an uninterrupted series of identically
             sized chunks. If this is not true, the chunks will be
             binned in step 3 next time.)

         9b Split off the remainder and place in last_remainder.
             Because of all the above, the remainder is always a
             `clean' chunk.

     10.  Return the chunk.


  Free: 
    Deallocation (free) consists only of placing the chunk on a list
    of returned chunks. free(0) has no effect.  Because freed chunks
    may be overwritten with link fields, this malloc will often die
    when freed memory is overwritten by user programs.  This can be
    very effective (albeit in an annoying way) in helping users track
    down dangling pointers.

  Realloc:
    Reallocation proceeds in the usual way. If a chunk can be extended,
    it is, else a malloc-copy-free sequence is taken. 

  Memalign, valloc:
    memalign arequests more than enough space from malloc, finds a spot
    within that chunk that meets the alignment request, and then
    possibly frees the leading and trailing space. Overreliance on
    memalign is a sure way to fragment space.

* Other implementation notes

  This malloc is NOT designed to work in multiprocessing applications.
  No semaphores or other concurrency control are provided to ensure
  that multiple malloc or free calls don't run at the same time, which
  could be disasterous. A single semaphore could be used across malloc,
  realloc, and free. It would be hard to obtain finer granularity.

  The implementation is in straight, hand-tuned ANSI C.  Among other
  consequences, it uses a lot of macros. These would be nicer as
  inlinable procedures, but using macros allows use with non-inlining
  compilers, and also makes it a bit easier to control when they
  should be expanded out by selectively embedding them in other macros
  and procedures. (According to profile information, it is almost, but
  not quite always best to expand.)

*/



/* TUNABLE PARAMETERS */

/* 
  SBRK_UNIT is a good power of two to call sbrk with It should
  normally be system page size or a multiple thereof.  If sbrk is very
  slow on a system, it pays to increase this.  Otherwise, it should
  not matter too much.
*/

#define SBRK_UNIT 8192

/* 
  MAX_PREALLOCS is the maximum number of chunks to preallocate.  The
  actual number to prealloc depends on the available space in a
  selected victim, so typical numbers will be less than the maximum.
  Because of this, the exact value seems not to matter too much, at
  least within values from around 1 to 100.  Since preallocation is
  heuristic, making it too huge doesn't help though. It may blindly
  create a lot of chunks when it turns out not to need any more, and
  then consolidate them all back again immediatetly. While this is
  pretty fast, it is better to avoid it.
*/

#define MAX_PREALLOCS 5




/* preliminaries */

#include <stddef.h>   /* for size_t */
#include <stdio.h>    /* needed for malloc_stats */

#ifdef __cplusplus
extern "C" {
#endif

extern void*     sbrk(size_t);

/* mechanics for getpagesize; adapted from bsd/gnu getpagesize.h */

#if defined(BSD) || defined(DGUX) || defined(sun) || defined(HAVE_GETPAGESIZE)
   extern size_t getpagesize();
#  define malloc_getpagesize getpagesize()
#else
#  include <sys/param.h>
#  ifdef EXEC_PAGESIZE
#    define malloc_getpagesize EXEC_PAGESIZE
#  else
#    ifdef NBPG
#      ifndef CLSIZE
#        define malloc_getpagesize NBPG
#      else
#        define malloc_getpagesize (NBPG * CLSIZE)
#      endif
#    else 
#      ifdef NBPC
#        define malloc_getpagesize NBPC
#      else
#        define malloc_getpagesize SBRK_UNIT    /* just guess */
#      endif
#    endif 
#  endif
#endif 

#ifdef __cplusplus
};  /* end of extern "C" */
#endif



/*  CHUNKS */


struct malloc_chunk
{
  size_t size;               /* Size in bytes, including overhead. */
                             /* Or'ed with INUSE if in use. */

  struct malloc_chunk* fd;   /* double links -- used only if free. */
  struct malloc_chunk* bk;

};

typedef struct malloc_chunk* mchunkptr;

/*  sizes, alignments */

#define SIZE_SZ              (sizeof(size_t))
#define MALLOC_MIN_OVERHEAD  (SIZE_SZ + SIZE_SZ)
#define MALLOC_ALIGN_MASK    (MALLOC_MIN_OVERHEAD - 1)
#define MINSIZE              (sizeof(struct malloc_chunk) + SIZE_SZ)


/* pad request bytes into a usable size */

#define request2size(req) \
  (((long)(req) <= 0) ?  MINSIZE : \
    (((req) + MALLOC_MIN_OVERHEAD + MALLOC_ALIGN_MASK) \
      & ~(MALLOC_ALIGN_MASK)))


/* Check if m has acceptable alignment */

#define aligned_OK(m)    (((size_t)((m)) & (MALLOC_ALIGN_MASK)) == 0)


/* Check if a chunk is immediately usable */

#define exact_fit(ptr, req) ((unsigned)((ptr)->size - (req)) < MINSIZE)

/* maintaining INUSE via size field */

#define INUSE  0x1     /* size field is or'd with INUSE when in use */
                       /* INUSE must be exactly 1, so can coexist with size */

#define inuse(p)       ((p)->size & INUSE)
#define set_inuse(p)   ((p)->size |= INUSE)
#define clear_inuse(p) ((p)->size &= ~INUSE)



/* Physical chunk operations  */

/* Ptr to next physical malloc_chunk. */

#define next_chunk(p)\
  ((mchunkptr)( ((char*)(p)) + ((p)->size & ~INUSE) ))

/* Ptr to previous physical malloc_chunk */

#define prev_chunk(p)\
  ((mchunkptr)( ((char*)(p)) - ( *((size_t*)((char*)(p) - SIZE_SZ)) & ~INUSE)))

/* place size at front and back of chunk */

#define set_size(P, Sz)														  \
{ 																			  \
  size_t Sss = (Sz);														  \
  (P)->size = *((size_t*)((char*)(P) + Sss - SIZE_SZ)) = Sss;				  \
}																			  \


/* conversion from malloc headers to user pointers, and back */

#define chunk2mem(p)   ((void*)((char*)(p) + SIZE_SZ))
#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - SIZE_SZ))




/* BINS */

struct malloc_bin
{
  struct malloc_chunk dhd;   /* dirty list header */
  struct malloc_chunk chd;   /* clean list header */
};

typedef struct malloc_bin* mbinptr;


/* field-extraction macros */

#define clean_head(b)  (&((b)->chd))
#define first_clean(b) ((b)->chd.fd)
#define last_clean(b)  ((b)->chd.bk)

#define dirty_head(b)  (&((b)->dhd))
#define first_dirty(b) ((b)->dhd.fd)
#define last_dirty(b)  ((b)->dhd.bk)




/* The bins, initialized to have null double linked lists */

#define NBINS     128             /* for 32 bit addresses */
#define LASTBIN   (&(av[NBINS-1]))
#define FIRSTBIN  (&(av[2]))      /* 1st 2 bins unused but simplify indexing */

/* Bins < MAX_SMALLBIN_OFFSET are special-cased since they are 8 bytes apart */

#define MAX_SMALLBIN_OFFSET  18
#define MAX_SMALLBIN_SIZE   144  /* Max size for which small bin rules apply */

/* Helper macro to initialize bins */
#define IAV(i)\
  {{ 0, &(av[i].dhd),  &(av[i].dhd) }, { 0, &(av[i].chd),  &(av[i].chd) }}

static struct malloc_bin  av[NBINS] = 
{
  IAV(0),   IAV(1),   IAV(2),   IAV(3),   IAV(4), 
  IAV(5),   IAV(6),   IAV(7),   IAV(8),   IAV(9),
  IAV(10),  IAV(11),  IAV(12),  IAV(13),  IAV(14), 
  IAV(15),  IAV(16),  IAV(17),  IAV(18),  IAV(19),
  IAV(20),  IAV(21),  IAV(22),  IAV(23),  IAV(24), 
  IAV(25),  IAV(26),  IAV(27),  IAV(28),  IAV(29),
  IAV(30),  IAV(31),  IAV(32),  IAV(33),  IAV(34), 
  IAV(35),  IAV(36),  IAV(37),  IAV(38),  IAV(39),
  IAV(40),  IAV(41),  IAV(42),  IAV(43),  IAV(44), 
  IAV(45),  IAV(46),  IAV(47),  IAV(48),  IAV(49),
  IAV(50),  IAV(51),  IAV(52),  IAV(53),  IAV(54), 
  IAV(55),  IAV(56),  IAV(57),  IAV(58),  IAV(59),
  IAV(60),  IAV(61),  IAV(62),  IAV(63),  IAV(64), 
  IAV(65),  IAV(66),  IAV(67),  IAV(68),  IAV(69),
  IAV(70),  IAV(71),  IAV(72),  IAV(73),  IAV(74), 
  IAV(75),  IAV(76),  IAV(77),  IAV(78),  IAV(79),
  IAV(80),  IAV(81),  IAV(82),  IAV(83),  IAV(84), 
  IAV(85),  IAV(86),  IAV(87),  IAV(88),  IAV(89),
  IAV(90),  IAV(91),  IAV(92),  IAV(93),  IAV(94), 
  IAV(95),  IAV(96),  IAV(97),  IAV(98),  IAV(99),
  IAV(100), IAV(101), IAV(102), IAV(103), IAV(104), 
  IAV(105), IAV(106), IAV(107), IAV(108), IAV(109),
  IAV(110), IAV(111), IAV(112), IAV(113), IAV(114), 
  IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
  IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), 
  IAV(125), IAV(126), IAV(127)
};



/* 
  Auxiliary lists 

  Even though they use bk/fd ptrs, neither of these are doubly linked!
  They are null-terminated since only the first is ever accessed.
  returned_list is just singly linked for speed in free().
  last_remainder currently has length of at most one.

*/

static mchunkptr returned_list = 0;  /* List of (unbinned) returned chunks */
static mchunkptr last_remainder = 0; /* last remaindered chunk from malloc */



/* 
  Indexing into bins 
  
  Funny-looking mechanics: 
    For small bins, the index is just size/8.
    For others, first find index corresponding to the power of 2
        closest to size, using a variant of standard base-2 log
        calculation that starts with the first non-small index and
        adjusts the size so that zero corresponds with it. On each
        iteration, the index is incremented across the four quadrants
        per power of two. (This loop runs a max of 27 iterations;
        usually much less.) After the loop, the remainder is quartered
        to find quadrant. The offsets for loop termination and
        quartering allow bins to start, not end at powers.
*/


#define findbin(Sizefb, Bfb)												  \
{																			  \
  size_t Sfb = (Sizefb);													  \
  if (Sfb < MAX_SMALLBIN_SIZE)												  \
    (Bfb) = (av + (Sfb >> 3));												  \
  else																		  \
  {																			  \
    /* Offset wrt small bins */												  \
    size_t Ifb = MAX_SMALLBIN_OFFSET;										  \
    Sfb >>= 3;																  \
	/* find power of 2 */													  \
    while (Sfb >= (MINSIZE * 2)) { Ifb += 4; Sfb >>= 1; }					  \
	/* adjust for quadrant */												  \
    Ifb += (Sfb - MINSIZE) >> 2;                            				  \
    (Bfb) = av + Ifb;														  \
  }																			  \
}																			  \




/* Keep track of the maximum actually used clean bin, to make loops faster */
/* (Not worth it to do the same for dirty ones) */

static mbinptr maxClean = FIRSTBIN;

#define reset_maxClean														  \
{																			  \
  while (maxClean > FIRSTBIN && clean_head(maxClean)==last_clean(maxClean))	  \
    --maxClean;																  \
}																			  \


/* Macros for linking and unlinking chunks */

/* take a chunk off a list */

#define unlink(Qul)															  \
{																			  \
  mchunkptr Bul = (Qul)->bk;												  \
  mchunkptr Ful = (Qul)->fd;												  \
  Ful->bk = Bul;  Bul->fd = Ful;											  \
}																			  \


/* place a chunk on the dirty list of its bin */

#define dirtylink(Qdl)														  \
{																			  \
  mchunkptr Pdl = (Qdl);													  \
  mbinptr   Bndl; 															  \
  mchunkptr Hdl, Fdl;														  \
																			  \
  findbin(Pdl->size, Bndl);													  \
  Hdl  = dirty_head(Bndl); 													  \
  Fdl  = Hdl->fd; 															  \
																			  \
  Pdl->bk = Hdl;  Pdl->fd = Fdl;  Fdl->bk = Hdl->fd = Pdl;					  \
}																			  \



/* Place a consolidated chunk on a clean list */

#define cleanlink(Qcl)														  \
{																			  \
  mchunkptr Pcl = (Qcl);													  \
  mbinptr Bcl; 																  \
  mchunkptr Hcl, Fcl;														  \
																			  \
  findbin(Qcl->size, Bcl);													  \
  Hcl  = clean_head(Bcl); 													  \
  Fcl  = Hcl->fd; 															  \
  if (Hcl == Fcl && Bcl > maxClean) maxClean = Bcl;							  \
																			  \
  Pcl->bk = Hcl;  Pcl->fd = Fcl;  Fcl->bk = Hcl->fd = Pcl;					  \
}																			  \



/* consolidate one chunk */

#define consolidate(Qc)														  \
{																			  \
  for (;;)																	  \
  {																			  \
    mchunkptr Pc = prev_chunk(Qc);											  \
    if (!inuse(Pc))															  \
    {																		  \
      unlink(Pc);															  \
      set_size(Pc, Pc->size + (Qc)->size);									  \
      (Qc) = Pc;															  \
    }																		  \
    else break;																  \
  }																			  \
  for (;;)																	  \
  {																			  \
    mchunkptr Nc = next_chunk(Qc);											  \
    if (!inuse(Nc))															  \
    {																		  \
      unlink(Nc);															  \
      set_size((Qc), (Qc)->size + Nc->size);								  \
    }																		  \
    else break;																  \
  }																			  \
}																			  \



/* Place the held remainder in its bin */
/* This MUST be invoked prior to ANY consolidation */

#define clear_last_remainder												  \
{																			  \
  if (last_remainder != 0)													  \
  {																			  \
    cleanlink(last_remainder);												  \
    last_remainder = 0;														  \
  }																			  \
}																			  \


/* Place a freed chunk on the returned_list */

#define return_chunk(Prc)													  \
{																			  \
  (Prc)->fd = returned_list;												  \
  returned_list = (Prc); 													  \
}																			  \



/* Misc utilities */

/* A helper for realloc */

static void free_returned_list()
{
  clear_last_remainder;
  while (returned_list != 0)
  {
    mchunkptr p = returned_list;
    returned_list = p->fd;
    clear_inuse(p);
    dirtylink(p);
  }
}

/* Utilities needed below for memalign */
/* Standard greatest common divisor algorithm */

static size_t gcd(size_t a, size_t b)
{
  size_t tmp;
  
  if (b > a)
  {
    tmp = a; a = b; b = tmp;
  }
  for(;;)
  {
    if (b == 0)
      return a;
    else if (b == 1)
      return b;
    else
    {
      tmp = b;
      b = a % b;
      a = tmp;
    }
  }
}

static size_t  lcm(size_t x, size_t y)
{
  return x / gcd(x, y) * y;
}





/* Dealing with sbrk */
/* This is one step of malloc; broken out for simplicity */

static size_t sbrked_mem = 0; /* Keep track of total mem for malloc_stats */

static mchunkptr malloc_from_sys(size_t nb)
{

  /* The end of memory returned from previous sbrk call */
  static size_t* last_sbrk_end = 0; 

  mchunkptr p;            /* Will hold a usable chunk */
  size_t*   ip;           /* to traverse sbrk ptr in size_t units */
  
  /* Find a good size to ask sbrk for.  */
  /* Minimally, we need to pad with enough space */
  /* to place dummy size/use fields to ends if needed */

  size_t sbrk_size = ((nb + SBRK_UNIT - 1 + SIZE_SZ + SIZE_SZ) 
                       / SBRK_UNIT) * SBRK_UNIT;

  ip = (size_t*)(sbrk(sbrk_size));
  if ((char*)ip == (char*)(-1)) /* sbrk returns -1 on failure */
    return 0;

  sbrked_mem += sbrk_size;

  if (last_sbrk_end != &ip[-1]) /* Is this chunk continguous with last? */
  {                             
    /* It's either first time through or someone else called sbrk. */
    /* Arrange end-markers at front & back */

    /* Shouldn't be necessary, but better to be safe */
    while (!aligned_OK(ip)) { ++ip; sbrk_size -= SIZE_SZ; }

    /* Mark the front as in use to prevent merging. (End done below.) */
    /* Note we can get away with only 1 word, not MINSIZE overhead here */

    *ip++ = SIZE_SZ | INUSE;
    
    p = (mchunkptr)ip;
    set_size(p,sbrk_size - (SIZE_SZ + SIZE_SZ)); 
    
  }
  else 
  {
    mchunkptr l;  

    /* We can safely make the header start at end of prev sbrked chunk. */
    /* We will still have space left at the end from a previous call */
    /* to place the end marker, below */

    p = (mchunkptr)(last_sbrk_end);
    set_size(p, sbrk_size);

    /* Even better, maybe we can merge with last fragment: */

    l = prev_chunk(p);
    if (!inuse(l))  
    {
      unlink(l);
      set_size(l, p->size + l->size);
      p = l;
    }

  }

  /* mark the end of sbrked space as in use to prevent merging */

  last_sbrk_end = (size_t*)((char*)p + p->size);
  *last_sbrk_end = SIZE_SZ | INUSE;

  return p;
}




/* Consolidate dirty chunks until create one big enough for current req. */
/* Call malloc_from_sys if can't create one. */
/* This is just one phase of malloc, but broken out for sanity */

static mchunkptr malloc_find_space(size_t nb)
{
  /* Circularly traverse bins so as not to pick on any one too much */
  static mbinptr rover = LASTBIN;    /* Circular roving ptr */

  mbinptr origin = rover;
  mbinptr b      = rover;

  /* Preliminaries.  */
  clear_last_remainder;
  reset_maxClean;

  do
  {
    mchunkptr p;

    while ( (p = last_dirty(b)) != dirty_head(b))
    {
      unlink(p);
      consolidate(p);

      if (p->size >= nb)
      {
        rover = b;
        return p;
      }
      else
        cleanlink(p);
    }

    b = (b == FIRSTBIN)? LASTBIN : b - 1;      /* circularly sweep down */

  } while (b != origin);

  /* If no return above, chain to the next step of malloc */
  return  malloc_from_sys(nb);
}


/* Clear out dirty chunks from a bin, along with the free list. */
/* Invoked from malloc when things look too fragmented */

static void malloc_clean_bin(mbinptr bin)
{
  mchunkptr p;

  clear_last_remainder;
  
  while ( (p = last_dirty(bin)) != dirty_head(bin))
  {
    unlink(p);
    consolidate(p);
    cleanlink(p);
  }

  while (returned_list != 0)
  {
    p = returned_list;
    returned_list = p->fd;
    clear_inuse(p);
    consolidate(p);
    cleanlink(p);
  }
}




/*   Finally, the user-level functions  */


void* malloc(size_t bytes)
{
  static size_t previous_request = 0;  /* To control preallocation */

  size_t    nb = request2size(bytes);  /* padded request size */
  mbinptr   bin;                       /* corresponding bin */
  mchunkptr victim;                    /* will hold selected chunk */

  /* ----------- Peek at returned_list; hope for luck */

  if ((victim = returned_list) != 0 && 
      exact_fit(victim, nb)) /* size check works even though INUSE set */
  {
    returned_list = victim->fd;
    return chunk2mem(victim);
  }
  
  findbin(nb, bin);  /*  Need to know bin for other traversals */

  /* ---------- Scan dirty list of own bin */

     /* Code for small bins special-cased out since */
     /* no size check or traversal needed and */
     /* clean bins are exact matches so might as well test now */

  if (nb < MAX_SMALLBIN_SIZE)
  {
    if ( ((victim = first_dirty(bin)) != dirty_head(bin)) ||
         ((victim = last_clean(bin))  != clean_head(bin)))
    {
      unlink(victim);
      set_inuse(victim);
      return chunk2mem(victim);
    }
  }
  else
  {
    if ( (victim = first_dirty(bin)) != dirty_head(bin))
    {
      do
      {
        if (exact_fit(victim, nb))
        {
          unlink(victim);
          set_inuse(victim);
          return chunk2mem(victim);
        }
        else victim = victim->fd;
      } while (victim != dirty_head(bin));
      
      /* If there were chunks in there but none matched, then */
      /* consolidate all chunks in this bin plus those on free list */
      /* to prevent further traversals and fragmentation. */
      
      malloc_clean_bin(bin);
    }
  }
    
  /* ------------ Search free list */

  if ( (victim = returned_list) != 0)
  {
    do
    {
      mchunkptr next = victim->fd;
      if (exact_fit(victim, nb))
      {
        returned_list = next;
        return chunk2mem(victim);
      }
      else    /* Place unusable chunks in their bins  */
      {
        clear_inuse(victim);
        dirtylink(victim);
        victim = next;
      }
    } while (victim != 0);
    returned_list = 0;
  }

  /* -------------- Try the remainder from last successful split */

  if ( (victim = last_remainder) != 0 && victim->size >= nb)
  {
    last_remainder = 0; /* reset for next time */
    goto split;
  }

  /* -------------- Scan through own clean bin */

      /* (Traversing back-to-front tends to choose `old' */
      /*  chunks that could not be further consolidated.) */

  for (victim = last_clean(bin); victim != clean_head(bin); victim=victim->bk)
  {
    if (victim->size >= nb)
    {
      unlink(victim); 
      goto split;
    }
  }

  /* -------------- Try all bigger clean bins */

      /* (Scanning upwards is slower but prevents fragmenting big */
      /* chunks that we might need later. If there aren't any smaller */
      /* ones, most likely we got a big one from last_remainder anyway.) */

  {
    mbinptr b;

    for (b = bin + 1; b <= maxClean; ++b)
    {
      if ( (victim = last_clean(b)) != clean_head(b) ) 
      {
        unlink(victim);
        goto split;
      }
    }
  }

  /* -------------  Consolidate or sbrk */

  victim =  malloc_find_space(nb);

  if (victim == 0)  /* propagate failure */
    return 0; 

  /* -------------- Possibly split victim chunk */

 split:  
  {
    size_t room = victim->size - nb;
    if (room >= MINSIZE)     
    {
      mchunkptr v = victim;  /* Hold so can break up in prealloc */
      
      set_size(victim, nb);  /* Adjust size of chunk to be returned */
      
      /* ---------- Preallocate */
      
          /* Try to preallocate some more of this size if */
          /* last (split) req was of same size */
      
      if (previous_request == nb)
      {
        int i;
        
        for (i = 0; i < MAX_PREALLOCS && room >= nb + MINSIZE; ++i)
        {
          room -= nb;
           
          v = (mchunkptr)((char*)(v) + nb); 
          set_size(v, nb);
          set_inuse(v);     /* free-list chunks must have inuse set */
          return_chunk(v);  /* add to free list */
        } 
      }

      previous_request = nb;  /* record for next time */

      /* ---------- Create remainder chunk  */
      
      /* Get rid of the old one first */
      if (last_remainder != 0) cleanlink(last_remainder);
      
      last_remainder = (mchunkptr)((char*)(v) + nb);
      set_size(last_remainder, room);
    }

    set_inuse(victim);
    return chunk2mem(victim);
  }
}




void free(void* mem)
{
  if (mem != 0)
  {
    mchunkptr p = mem2chunk(mem);
    return_chunk(p);
  }
}

 


void* realloc(void* mem, size_t bytes)
{
  if (mem == 0) 
    return malloc(bytes);
  else
  {
    size_t       nb      = request2size(bytes);
    mchunkptr    p       = mem2chunk(mem);
    size_t       oldsize;
    long         room;
    mchunkptr    nxt;

    if (p == returned_list) /* support realloc-last-freed-chunk idiocy */
       returned_list = returned_list->fd;

    clear_inuse(p);
    oldsize = p->size;

    /* try to expand (even if already big enough), to clean up chunk */

    free_returned_list(); /* make freed chunks available to consolidate */

    while (!inuse(nxt = next_chunk(p))) /* Expand the chunk forward */
    {
      unlink(nxt);
      set_size(p, p->size + nxt->size);
    }

    room = p->size - nb;
    if (room >= 0)          /* Successful expansion */
    {
      if (room >= MINSIZE)  /* give some back if possible */
      {
        mchunkptr remainder = (mchunkptr)((char*)(p) + nb);
        set_size(remainder, room);
        cleanlink(remainder);
        set_size(p, nb);
      }
      set_inuse(p);
      return chunk2mem(p);
    }
    else /* Could not expand. Get another chunk and copy. */
    {
      void* newmem;
      size_t count;
      size_t* src;
      size_t* dst;

      set_inuse(p);    /* don't let malloc consolidate us yet! */
      newmem = malloc(nb);

      /* Copy -- we know that alignment is at least `size_t' */

      src = (size_t*) mem;
      dst = (size_t*) newmem;
      count = (oldsize - SIZE_SZ) / sizeof(size_t);
      while (count-- > 0) *dst++ = *src++;

      free(mem);
      return newmem;
    }
  }
}



/* Return a pointer to space with at least the alignment requested */
/* Alignment argument should be a power of two */

void* memalign(size_t alignment, size_t bytes)
{
  mchunkptr p;
  size_t    nb = request2size(bytes);
  size_t    room;

  /* find an alignment that both we and the user can live with: */
  /* least common multiple guarantees mutual happiness */
  size_t    align = lcm(alignment, MALLOC_MIN_OVERHEAD);

  /* call malloc with worst case padding to hit alignment; */
  /* we will give back extra */

  size_t req = nb + align + MINSIZE;
  void*  m = malloc(req);

  if (m == 0) return 0; /* propagate failure */

  p = mem2chunk(m);
  clear_inuse(p);


  if (((size_t)(m) % align) != 0) /* misaligned */
  {

    /* find an aligned spot inside chunk */

    mchunkptr ap = (mchunkptr)((((size_t)(m) + align-1) & -align) - SIZE_SZ);

    size_t gap = (size_t)(ap) - (size_t)(p);

    /* we need to give back leading space in a chunk of at least MINSIZE */

    if (gap < MINSIZE)
    {
      /* This works since align >= MINSIZE */
      /* and we've malloc'd enough total room */

      ap = (mchunkptr)( (size_t)(ap) + align );
      gap += align;    
    }

    room = p->size - gap;

    /* give back leader */
    set_size(p, gap);
    dirtylink(p); /* Don't really know if clean or dirty; be safe */

    /* use the rest */
    p = ap;
    set_size(p, room);
  }

  /* also give back spare room at the end */

  room = p->size - nb;
  if (room >= MINSIZE)
  {
    mchunkptr remainder = (mchunkptr)((char*)(p) + nb);
    set_size(remainder, room);
    dirtylink(remainder); /* Don't really know; be safe */
    set_size(p, nb);
  }

  set_inuse(p);
  return chunk2mem(p);

}



/* Derivatives */

void* valloc(size_t bytes)
{
  /* Cache result of getpagesize */
  static size_t malloc_pagesize = 0;

  if (malloc_pagesize == 0) malloc_pagesize = malloc_getpagesize;
  return memalign (malloc_pagesize, bytes);
}


void* calloc(size_t n, size_t elem_size)
{
  size_t sz = n * elem_size;
  void* p = malloc(sz);
  char* q = (char*) p;
  while (sz-- > 0) *q++ = 0;
  return p;
}

void cfree(void *mem)
{
  free(mem);
}

size_t malloc_usable_size(void* mem)
{
  if (mem == 0)
    return 0;
  else
  {
    mchunkptr p = (mchunkptr)((char*)(mem) - SIZE_SZ); 
    size_t sz = p->size & ~(INUSE);
    /* report zero if not in use or detectably corrupt */
    if (p->size == sz || sz != *((size_t*)((char*)(p) + sz - SIZE_SZ)))
      return 0;
    else
      return sz - MALLOC_MIN_OVERHEAD;
  }
}
    

void malloc_stats()
{

  /* Traverse through and count all sizes of all chunks */

  size_t avail = 0;
  size_t malloced_mem;

  mbinptr b;

  free_returned_list();

  for (b = FIRSTBIN; b <= LASTBIN; ++b)
  {
    mchunkptr p;

    for (p = first_dirty(b); p != dirty_head(b); p = p->fd)
      avail += p->size;

    for (p = first_clean(b); p != clean_head(b); p = p->fd)
      avail += p->size;
  }

  malloced_mem = sbrked_mem - avail;

  fprintf(stderr, "total mem = %10u\n", sbrked_mem);
  fprintf(stderr, "in use    = %10u\n", malloced_mem);

}