File: dragon.g.sml

package info (click to toggle)
smlnj 110.79-6
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 82,552 kB
  • sloc: ansic: 32,532; asm: 6,314; sh: 2,303; makefile: 1,821; perl: 1,170; pascal: 295; yacc: 190; cs: 78; python: 77; lisp: 19
file content (944 lines) | stat: -rw-r--r-- 47,991 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
structure 
Tokens = struct

    datatype token = EOF
      | REAL of Real.real
      | INT of IntInf.int
      | ID of string
      | MULOP of string
      | ADDOP of string
      | RELOP of string
      | MINUS
      | RP
      | LP
      | RSB
      | LSB
      | DOT
      | SEMI
      | COLON
      | COMMA
      | ASSIGNOP
      | KW_not
      | KW_do
      | KW_while
      | KW_else
      | KW_then
      | KW_if
      | KW_end
      | KW_begin
      | KW_procedure
      | KW_function
      | KW_real
      | KW_integer
      | KW_of
      | KW_array
      | KW_var
      | KW_program

    val allToks = [EOF, ID("bogus"), MINUS, RP, LP, RSB, LSB, DOT, SEMI, COLON, COMMA, ASSIGNOP, KW_not, KW_do, KW_while, KW_else, KW_then, KW_if, KW_end, KW_begin, KW_procedure, KW_function, KW_real, KW_integer, KW_of, KW_array, KW_var, KW_program]

    fun toString tok =
(case (tok)
 of (EOF) => "EOF"
  | (REAL(_)) => "REAL"
  | (INT(_)) => "INT"
  | (ID(_)) => "ID"
  | (MULOP(_)) => "MULOP"
  | (ADDOP(_)) => "ADDOP"
  | (RELOP(_)) => "RELOP"
  | (MINUS) => "-"
  | (RP) => ")"
  | (LP) => "("
  | (RSB) => "]"
  | (LSB) => "["
  | (DOT) => "."
  | (SEMI) => ";"
  | (COLON) => ":"
  | (COMMA) => ","
  | (ASSIGNOP) => ":="
  | (KW_not) => "not"
  | (KW_do) => "do"
  | (KW_while) => "while"
  | (KW_else) => "else"
  | (KW_then) => "then"
  | (KW_if) => "if"
  | (KW_end) => "end"
  | (KW_begin) => "begin"
  | (KW_procedure) => "procedure"
  | (KW_function) => "function"
  | (KW_real) => "real"
  | (KW_integer) => "integer"
  | (KW_of) => "of"
  | (KW_array) => "array"
  | (KW_var) => "var"
  | (KW_program) => "program"
(* end case *))
    fun isKW tok =
(case (tok)
 of (EOF) => false
  | (REAL(_)) => false
  | (INT(_)) => false
  | (ID(_)) => false
  | (MULOP(_)) => false
  | (ADDOP(_)) => false
  | (RELOP(_)) => false
  | (MINUS) => false
  | (RP) => false
  | (LP) => false
  | (RSB) => false
  | (LSB) => false
  | (DOT) => false
  | (SEMI) => false
  | (COLON) => false
  | (COMMA) => false
  | (ASSIGNOP) => false
  | (KW_not) => true
  | (KW_do) => true
  | (KW_while) => true
  | (KW_else) => true
  | (KW_then) => true
  | (KW_if) => true
  | (KW_end) => true
  | (KW_begin) => true
  | (KW_procedure) => true
  | (KW_function) => true
  | (KW_real) => true
  | (KW_integer) => true
  | (KW_of) => true
  | (KW_array) => true
  | (KW_var) => true
  | (KW_program) => true
(* end case *))
    val changes = []


  fun isEOF EOF = true
    | isEOF _ = false

end

functor ParseFn(Lex : ANTLR_LEXER) = struct

  local
    structure Tok = 
Tokens
    structure UserCode =
      struct

  val cat     = String.concat
  val catSp   = String.concatWith " "
  val catNl   = String.concatWith "\n"
  val catNlNl = String.concatWith "\n\n"
  val catCm   = String.concatWith ", "
  val catSemi = String.concatWith "; "
  val catSemiNl = String.concatWith ";\n"

fun program_PROD_1_ACT (ID, LP, RP, DOT, SR1, SR2, SEMI, compound_statement, id_list, KW_program, ID_SPAN : (Lex.pos * Lex.pos), LP_SPAN : (Lex.pos * Lex.pos), RP_SPAN : (Lex.pos * Lex.pos), DOT_SPAN : (Lex.pos * Lex.pos), SR1_SPAN : (Lex.pos * Lex.pos), SR2_SPAN : (Lex.pos * Lex.pos), SEMI_SPAN : (Lex.pos * Lex.pos), compound_statement_SPAN : (Lex.pos * Lex.pos), id_list_SPAN : (Lex.pos * Lex.pos), KW_program_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( catNl [ 
	 cat ["program ", ID, "(", id_list, ");"],
	 catNl   SR1, catNlNl SR2,
	 compound_statement ^ "."
      ])
fun id_list_PROD_1_ACT (ID, SR, ID_SPAN : (Lex.pos * Lex.pos), SR_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( catCm (ID::SR) )
fun declaration_PROD_1_ACT (SEMI, id_list_type, KW_var, SEMI_SPAN : (Lex.pos * Lex.pos), id_list_type_SPAN : (Lex.pos * Lex.pos), KW_var_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( cat ["var ", id_list_type, ";"] )
fun compound_type_PROD_2_ACT (LSB, RSB, DOT1, DOT2, INT1, INT2, KW_array, standard_type, KW_of, LSB_SPAN : (Lex.pos * Lex.pos), RSB_SPAN : (Lex.pos * Lex.pos), DOT1_SPAN : (Lex.pos * Lex.pos), DOT2_SPAN : (Lex.pos * Lex.pos), INT1_SPAN : (Lex.pos * Lex.pos), INT2_SPAN : (Lex.pos * Lex.pos), KW_array_SPAN : (Lex.pos * Lex.pos), standard_type_SPAN : (Lex.pos * Lex.pos), KW_of_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( cat ["array [", IntInf.toString INT1, "..", IntInf.toString INT2, "] of ", standard_type] )
fun standard_type_PROD_1_ACT (KW_integer, KW_integer_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( "integer" )
fun standard_type_PROD_2_ACT (KW_real, KW_real_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( "real" )
fun id_list_type_PROD_1_ACT (compound_type, COLON, id_list, compound_type_SPAN : (Lex.pos * Lex.pos), COLON_SPAN : (Lex.pos * Lex.pos), id_list_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( catSp [id_list, ":", compound_type] )
fun subprogram_declaration_PROD_1_ACT (SR, SEMI, compound_statement, subprogram_head, SR_SPAN : (Lex.pos * Lex.pos), SEMI_SPAN : (Lex.pos * Lex.pos), compound_statement_SPAN : (Lex.pos * Lex.pos), subprogram_head_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( catNl [subprogram_head, catNl SR, compound_statement ^ ";"] )
fun subprogram_head_PROD_1_ACT (ID, SEMI, standard_type, COLON, arguments, KW_function, ID_SPAN : (Lex.pos * Lex.pos), SEMI_SPAN : (Lex.pos * Lex.pos), standard_type_SPAN : (Lex.pos * Lex.pos), COLON_SPAN : (Lex.pos * Lex.pos), arguments_SPAN : (Lex.pos * Lex.pos), KW_function_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( cat ["function ", ID, arguments, " : ", standard_type, ";"] )
fun subprogram_head_PROD_2_ACT (ID, SEMI, KW_procedure, arguments, ID_SPAN : (Lex.pos * Lex.pos), SEMI_SPAN : (Lex.pos * Lex.pos), KW_procedure_SPAN : (Lex.pos * Lex.pos), arguments_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( cat ["procedure ", ID, arguments, ";"] )
fun arguments_PROD_1_ACT (LP, RP, parameter_list, LP_SPAN : (Lex.pos * Lex.pos), RP_SPAN : (Lex.pos * Lex.pos), parameter_list_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( "(" ^ parameter_list ^ ")" )
fun arguments_PROD_2_ACT (FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( "" )
fun parameter_list_PROD_1_ACT (SR, id_list_type, SR_SPAN : (Lex.pos * Lex.pos), id_list_type_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( catSemi (id_list_type::SR) )
fun compound_statement_PROD_1_SUBRULE_1_PROD_1_ACT (SR, KW_begin, statement, SR_SPAN : (Lex.pos * Lex.pos), KW_begin_SPAN : (Lex.pos * Lex.pos), statement_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( catSemiNl (statement::SR) )
fun compound_statement_PROD_1_ACT (SR, KW_begin, KW_end, SR_SPAN : (Lex.pos * Lex.pos), KW_begin_SPAN : (Lex.pos * Lex.pos), KW_end_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( catNl ["begin", getOpt(SR, ""), "end"] )
fun statement_PROD_1_ACT (exp, variable, ASSIGNOP, exp_SPAN : (Lex.pos * Lex.pos), variable_SPAN : (Lex.pos * Lex.pos), ASSIGNOP_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( cat [variable, " := ", exp] )
fun statement_PROD_4_ACT (exp, KW_else, KW_then, statement1, statement2, KW_if, exp_SPAN : (Lex.pos * Lex.pos), KW_else_SPAN : (Lex.pos * Lex.pos), KW_then_SPAN : (Lex.pos * Lex.pos), statement1_SPAN : (Lex.pos * Lex.pos), statement2_SPAN : (Lex.pos * Lex.pos), KW_if_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( cat ["if ", exp, " then ", statement1, " else ", statement2] )
fun statement_PROD_5_ACT (exp, KW_while, KW_do, statement, exp_SPAN : (Lex.pos * Lex.pos), KW_while_SPAN : (Lex.pos * Lex.pos), KW_do_SPAN : (Lex.pos * Lex.pos), statement_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( cat ["while ", exp, " do ", statement] )
fun variable_PROD_2_ACT (ID, LSB, RSB, exp, ID_SPAN : (Lex.pos * Lex.pos), LSB_SPAN : (Lex.pos * Lex.pos), RSB_SPAN : (Lex.pos * Lex.pos), exp_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( cat [ID, "[", exp, "]"] )
fun procedure_statement_PROD_2_ACT (ID, LP, RP, SR, exp, ID_SPAN : (Lex.pos * Lex.pos), LP_SPAN : (Lex.pos * Lex.pos), RP_SPAN : (Lex.pos * Lex.pos), SR_SPAN : (Lex.pos * Lex.pos), exp_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( cat [ID, "(", catCm (exp::SR), ")" ] )
fun exp_PROD_1_SUBRULE_1_PROD_1_ACT (simple_exp, RELOP, simple_exp_SPAN : (Lex.pos * Lex.pos), RELOP_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( RELOP ^ " " ^ simple_exp )
fun exp_PROD_1_ACT (SR, simple_exp, SR_SPAN : (Lex.pos * Lex.pos), simple_exp_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( catSp [simple_exp, getOpt(SR, "")] )
fun simple_exp_PROD_1_SUBRULE_1_PROD_1_ACT (signed_term, ADDOP, signed_term_SPAN : (Lex.pos * Lex.pos), ADDOP_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( ADDOP ^ " " ^signed_term )
fun simple_exp_PROD_1_ACT (SR, signed_term, SR_SPAN : (Lex.pos * Lex.pos), signed_term_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( catSp (signed_term::SR) )
fun signed_term_PROD_1_ACT (term, MINUS, term_SPAN : (Lex.pos * Lex.pos), MINUS_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( "-" ^ term )
fun term_PROD_1_SUBRULE_1_PROD_1_ACT (factor, MULOP, factor_SPAN : (Lex.pos * Lex.pos), MULOP_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( MULOP ^ " " ^ factor )
fun term_PROD_1_ACT (SR, factor, SR_SPAN : (Lex.pos * Lex.pos), factor_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( catSp (factor::SR) )
fun factor_PROD_2_ACT (ID, LP, RP, SR, exp, ID_SPAN : (Lex.pos * Lex.pos), LP_SPAN : (Lex.pos * Lex.pos), RP_SPAN : (Lex.pos * Lex.pos), SR_SPAN : (Lex.pos * Lex.pos), exp_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( cat [ID, "(", catCm (exp::SR), ")" ] )
fun factor_PROD_3_ACT (INT, INT_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( IntInf.toString INT )
fun factor_PROD_4_ACT (REAL, REAL_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( Real.toString REAL )
fun factor_PROD_5_ACT (LP, RP, exp, LP_SPAN : (Lex.pos * Lex.pos), RP_SPAN : (Lex.pos * Lex.pos), exp_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( "(" ^ exp ^ ")" )
fun factor_PROD_6_ACT (factor, KW_not, factor_SPAN : (Lex.pos * Lex.pos), KW_not_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)) = 
  ( "not " ^ factor )
      end (* UserCode *)

    structure Err = AntlrErrHandler(
      structure Tok = Tok
      structure Lex = Lex)
    structure EBNF = AntlrEBNF(
      struct
	type strm = Err.wstream
	val getSpan = Err.getSpan
      end)

    fun mk lexFn = let
fun getS() = {}
fun putS{} = ()
fun unwrap (ret, strm, repairs) = (ret, strm, repairs)        val (eh, lex) = Err.mkErrHandler {get = getS, put = putS}
	fun fail() = Err.failure eh
	fun tryProds (strm, prods) = let
	  fun try [] = fail()
	    | try (prod :: prods) = 
	        (Err.whileDisabled eh (fn() => prod strm)) 
		handle Err.ParseError => try (prods)
          in try prods end
fun matchEOF strm = (case (lex(strm))
 of (Tok.EOF, span, strm') => ((), span, strm')
  | _ => fail()
(* end case *))
fun matchREAL strm = (case (lex(strm))
 of (Tok.REAL(x), span, strm') => (x, span, strm')
  | _ => fail()
(* end case *))
fun matchINT strm = (case (lex(strm))
 of (Tok.INT(x), span, strm') => (x, span, strm')
  | _ => fail()
(* end case *))
fun matchID strm = (case (lex(strm))
 of (Tok.ID(x), span, strm') => (x, span, strm')
  | _ => fail()
(* end case *))
fun matchMULOP strm = (case (lex(strm))
 of (Tok.MULOP(x), span, strm') => (x, span, strm')
  | _ => fail()
(* end case *))
fun matchADDOP strm = (case (lex(strm))
 of (Tok.ADDOP(x), span, strm') => (x, span, strm')
  | _ => fail()
(* end case *))
fun matchRELOP strm = (case (lex(strm))
 of (Tok.RELOP(x), span, strm') => (x, span, strm')
  | _ => fail()
(* end case *))
fun matchMINUS strm = (case (lex(strm))
 of (Tok.MINUS, span, strm') => ((), span, strm')
  | _ => fail()
(* end case *))
fun matchRP strm = (case (lex(strm))
 of (Tok.RP, span, strm') => ((), span, strm')
  | _ => fail()
(* end case *))
fun matchLP strm = (case (lex(strm))
 of (Tok.LP, span, strm') => ((), span, strm')
  | _ => fail()
(* end case *))
fun matchRSB strm = (case (lex(strm))
 of (Tok.RSB, span, strm') => ((), span, strm')
  | _ => fail()
(* end case *))
fun matchLSB strm = (case (lex(strm))
 of (Tok.LSB, span, strm') => ((), span, strm')
  | _ => fail()
(* end case *))
fun matchDOT strm = (case (lex(strm))
 of (Tok.DOT, span, strm') => ((), span, strm')
  | _ => fail()
(* end case *))
fun matchSEMI strm = (case (lex(strm))
 of (Tok.SEMI, span, strm') => ((), span, strm')
  | _ => fail()
(* end case *))
fun matchCOLON strm = (case (lex(strm))
 of (Tok.COLON, span, strm') => ((), span, strm')
  | _ => fail()
(* end case *))
fun matchCOMMA strm = (case (lex(strm))
 of (Tok.COMMA, span, strm') => ((), span, strm')
  | _ => fail()
(* end case *))
fun matchASSIGNOP strm = (case (lex(strm))
 of (Tok.ASSIGNOP, span, strm') => ((), span, strm')
  | _ => fail()
(* end case *))
fun matchKW_not strm = (case (lex(strm))
 of (Tok.KW_not, span, strm') => ((), span, strm')
  | _ => fail()
(* end case *))
fun matchKW_do strm = (case (lex(strm))
 of (Tok.KW_do, span, strm') => ((), span, strm')
  | _ => fail()
(* end case *))
fun matchKW_while strm = (case (lex(strm))
 of (Tok.KW_while, span, strm') => ((), span, strm')
  | _ => fail()
(* end case *))
fun matchKW_else strm = (case (lex(strm))
 of (Tok.KW_else, span, strm') => ((), span, strm')
  | _ => fail()
(* end case *))
fun matchKW_then strm = (case (lex(strm))
 of (Tok.KW_then, span, strm') => ((), span, strm')
  | _ => fail()
(* end case *))
fun matchKW_if strm = (case (lex(strm))
 of (Tok.KW_if, span, strm') => ((), span, strm')
  | _ => fail()
(* end case *))
fun matchKW_end strm = (case (lex(strm))
 of (Tok.KW_end, span, strm') => ((), span, strm')
  | _ => fail()
(* end case *))
fun matchKW_begin strm = (case (lex(strm))
 of (Tok.KW_begin, span, strm') => ((), span, strm')
  | _ => fail()
(* end case *))
fun matchKW_procedure strm = (case (lex(strm))
 of (Tok.KW_procedure, span, strm') => ((), span, strm')
  | _ => fail()
(* end case *))
fun matchKW_function strm = (case (lex(strm))
 of (Tok.KW_function, span, strm') => ((), span, strm')
  | _ => fail()
(* end case *))
fun matchKW_real strm = (case (lex(strm))
 of (Tok.KW_real, span, strm') => ((), span, strm')
  | _ => fail()
(* end case *))
fun matchKW_integer strm = (case (lex(strm))
 of (Tok.KW_integer, span, strm') => ((), span, strm')
  | _ => fail()
(* end case *))
fun matchKW_of strm = (case (lex(strm))
 of (Tok.KW_of, span, strm') => ((), span, strm')
  | _ => fail()
(* end case *))
fun matchKW_array strm = (case (lex(strm))
 of (Tok.KW_array, span, strm') => ((), span, strm')
  | _ => fail()
(* end case *))
fun matchKW_var strm = (case (lex(strm))
 of (Tok.KW_var, span, strm') => ((), span, strm')
  | _ => fail()
(* end case *))
fun matchKW_program strm = (case (lex(strm))
 of (Tok.KW_program, span, strm') => ((), span, strm')
  | _ => fail()
(* end case *))

val (program_NT) = 
let
fun exp_NT (strm) = let
      val (simple_exp_RES, simple_exp_SPAN, strm') = simple_exp_NT(strm)
      fun exp_PROD_1_SUBRULE_1_NT (strm) = let
            val (RELOP_RES, RELOP_SPAN, strm') = matchRELOP(strm)
            val (simple_exp_RES, simple_exp_SPAN, strm') = simple_exp_NT(strm')
            val FULL_SPAN = (#1(RELOP_SPAN), #2(simple_exp_SPAN))
            in
              (UserCode.exp_PROD_1_SUBRULE_1_PROD_1_ACT (simple_exp_RES, RELOP_RES, simple_exp_SPAN : (Lex.pos * Lex.pos), RELOP_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
                FULL_SPAN, strm')
            end
      fun exp_PROD_1_SUBRULE_1_PRED (strm) = (case (lex(strm))
             of (Tok.RELOP(_), _, strm') => true
              | _ => false
            (* end case *))
      val (SR_RES, SR_SPAN, strm') = EBNF.optional(exp_PROD_1_SUBRULE_1_PRED, exp_PROD_1_SUBRULE_1_NT, strm')
      val FULL_SPAN = (#1(simple_exp_SPAN), #2(SR_SPAN))
      in
        (UserCode.exp_PROD_1_ACT (SR_RES, simple_exp_RES, SR_SPAN : (Lex.pos * Lex.pos), simple_exp_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
          FULL_SPAN, strm')
      end
and simple_exp_NT (strm) = let
      val (signed_term_RES, signed_term_SPAN, strm') = signed_term_NT(strm)
      fun simple_exp_PROD_1_SUBRULE_1_NT (strm) = let
            val (ADDOP_RES, ADDOP_SPAN, strm') = matchADDOP(strm)
            val (signed_term_RES, signed_term_SPAN, strm') = signed_term_NT(strm')
            val FULL_SPAN = (#1(ADDOP_SPAN), #2(signed_term_SPAN))
            in
              (UserCode.simple_exp_PROD_1_SUBRULE_1_PROD_1_ACT (signed_term_RES, ADDOP_RES, signed_term_SPAN : (Lex.pos * Lex.pos), ADDOP_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
                FULL_SPAN, strm')
            end
      fun simple_exp_PROD_1_SUBRULE_1_PRED (strm) = (case (lex(strm))
             of (Tok.ADDOP(_), _, strm') => true
              | _ => false
            (* end case *))
      val (SR_RES, SR_SPAN, strm') = EBNF.closure(simple_exp_PROD_1_SUBRULE_1_PRED, simple_exp_PROD_1_SUBRULE_1_NT, strm')
      val FULL_SPAN = (#1(signed_term_SPAN), #2(SR_SPAN))
      in
        (UserCode.simple_exp_PROD_1_ACT (SR_RES, signed_term_RES, SR_SPAN : (Lex.pos * Lex.pos), signed_term_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
          FULL_SPAN, strm')
      end
and signed_term_NT (strm) = let
      fun signed_term_PROD_1 (strm) = let
            val (MINUS_RES, MINUS_SPAN, strm') = matchMINUS(strm)
            val (term_RES, term_SPAN, strm') = term_NT(strm')
            val FULL_SPAN = (#1(MINUS_SPAN), #2(term_SPAN))
            in
              (UserCode.signed_term_PROD_1_ACT (term_RES, MINUS_RES, term_SPAN : (Lex.pos * Lex.pos), MINUS_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
                FULL_SPAN, strm')
            end
      fun signed_term_PROD_2 (strm) = let
            val (term_RES, term_SPAN, strm') = term_NT(strm)
            val FULL_SPAN = (#1(term_SPAN), #2(term_SPAN))
            in
              ((term_RES), FULL_SPAN, strm')
            end
      in
        (case (lex(strm))
         of (Tok.KW_not, _, strm') => signed_term_PROD_2(strm)
          | (Tok.LP, _, strm') => signed_term_PROD_2(strm)
          | (Tok.ID(_), _, strm') => signed_term_PROD_2(strm)
          | (Tok.INT(_), _, strm') => signed_term_PROD_2(strm)
          | (Tok.REAL(_), _, strm') => signed_term_PROD_2(strm)
          | (Tok.MINUS, _, strm') => signed_term_PROD_1(strm)
          | _ => fail()
        (* end case *))
      end
and term_NT (strm) = let
      val (factor_RES, factor_SPAN, strm') = factor_NT(strm)
      fun term_PROD_1_SUBRULE_1_NT (strm) = let
            val (MULOP_RES, MULOP_SPAN, strm') = matchMULOP(strm)
            val (factor_RES, factor_SPAN, strm') = factor_NT(strm')
            val FULL_SPAN = (#1(MULOP_SPAN), #2(factor_SPAN))
            in
              (UserCode.term_PROD_1_SUBRULE_1_PROD_1_ACT (factor_RES, MULOP_RES, factor_SPAN : (Lex.pos * Lex.pos), MULOP_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
                FULL_SPAN, strm')
            end
      fun term_PROD_1_SUBRULE_1_PRED (strm) = (case (lex(strm))
             of (Tok.MULOP(_), _, strm') => true
              | _ => false
            (* end case *))
      val (SR_RES, SR_SPAN, strm') = EBNF.closure(term_PROD_1_SUBRULE_1_PRED, term_PROD_1_SUBRULE_1_NT, strm')
      val FULL_SPAN = (#1(factor_SPAN), #2(SR_SPAN))
      in
        (UserCode.term_PROD_1_ACT (SR_RES, factor_RES, SR_SPAN : (Lex.pos * Lex.pos), factor_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
          FULL_SPAN, strm')
      end
and factor_NT (strm) = let
      fun factor_PROD_1 (strm) = let
            val (variable_RES, variable_SPAN, strm') = variable_NT(strm)
            val FULL_SPAN = (#1(variable_SPAN), #2(variable_SPAN))
            in
              ((variable_RES), FULL_SPAN, strm')
            end
      fun factor_PROD_2 (strm) = let
            val (ID_RES, ID_SPAN, strm') = matchID(strm)
            val (LP_RES, LP_SPAN, strm') = matchLP(strm')
            val (exp_RES, exp_SPAN, strm') = exp_NT(strm')
            fun factor_PROD_2_SUBRULE_1_NT (strm) = let
                  val (COMMA_RES, COMMA_SPAN, strm') = matchCOMMA(strm)
                  val (exp_RES, exp_SPAN, strm') = exp_NT(strm')
                  val FULL_SPAN = (#1(COMMA_SPAN), #2(exp_SPAN))
                  in
                    ((exp_RES), FULL_SPAN, strm')
                  end
            fun factor_PROD_2_SUBRULE_1_PRED (strm) = (case (lex(strm))
                   of (Tok.COMMA, _, strm') => true
                    | _ => false
                  (* end case *))
            val (SR_RES, SR_SPAN, strm') = EBNF.closure(factor_PROD_2_SUBRULE_1_PRED, factor_PROD_2_SUBRULE_1_NT, strm')
            val (RP_RES, RP_SPAN, strm') = matchRP(strm')
            val FULL_SPAN = (#1(ID_SPAN), #2(RP_SPAN))
            in
              (UserCode.factor_PROD_2_ACT (ID_RES, LP_RES, RP_RES, SR_RES, exp_RES, ID_SPAN : (Lex.pos * Lex.pos), LP_SPAN : (Lex.pos * Lex.pos), RP_SPAN : (Lex.pos * Lex.pos), SR_SPAN : (Lex.pos * Lex.pos), exp_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
                FULL_SPAN, strm')
            end
      fun factor_PROD_3 (strm) = let
            val (INT_RES, INT_SPAN, strm') = matchINT(strm)
            val FULL_SPAN = (#1(INT_SPAN), #2(INT_SPAN))
            in
              (UserCode.factor_PROD_3_ACT (INT_RES, INT_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
                FULL_SPAN, strm')
            end
      fun factor_PROD_4 (strm) = let
            val (REAL_RES, REAL_SPAN, strm') = matchREAL(strm)
            val FULL_SPAN = (#1(REAL_SPAN), #2(REAL_SPAN))
            in
              (UserCode.factor_PROD_4_ACT (REAL_RES, REAL_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
                FULL_SPAN, strm')
            end
      fun factor_PROD_5 (strm) = let
            val (LP_RES, LP_SPAN, strm') = matchLP(strm)
            val (exp_RES, exp_SPAN, strm') = exp_NT(strm')
            val (RP_RES, RP_SPAN, strm') = matchRP(strm')
            val FULL_SPAN = (#1(LP_SPAN), #2(RP_SPAN))
            in
              (UserCode.factor_PROD_5_ACT (LP_RES, RP_RES, exp_RES, LP_SPAN : (Lex.pos * Lex.pos), RP_SPAN : (Lex.pos * Lex.pos), exp_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
                FULL_SPAN, strm')
            end
      fun factor_PROD_6 (strm) = let
            val (KW_not_RES, KW_not_SPAN, strm') = matchKW_not(strm)
            val (factor_RES, factor_SPAN, strm') = factor_NT(strm')
            val FULL_SPAN = (#1(KW_not_SPAN), #2(factor_SPAN))
            in
              (UserCode.factor_PROD_6_ACT (factor_RES, KW_not_RES, factor_SPAN : (Lex.pos * Lex.pos), KW_not_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
                FULL_SPAN, strm')
            end
      in
        (case (lex(strm))
         of (Tok.KW_not, _, strm') => factor_PROD_6(strm)
          | (Tok.REAL(_), _, strm') => factor_PROD_4(strm)
          | (Tok.ID(_), _, strm') =>
              (case (lex(strm'))
               of (Tok.KW_end, _, strm') => factor_PROD_1(strm)
                | (Tok.KW_then, _, strm') => factor_PROD_1(strm)
                | (Tok.KW_else, _, strm') => factor_PROD_1(strm)
                | (Tok.KW_do, _, strm') => factor_PROD_1(strm)
                | (Tok.COMMA, _, strm') => factor_PROD_1(strm)
                | (Tok.SEMI, _, strm') => factor_PROD_1(strm)
                | (Tok.LSB, _, strm') => factor_PROD_1(strm)
                | (Tok.RSB, _, strm') => factor_PROD_1(strm)
                | (Tok.RP, _, strm') => factor_PROD_1(strm)
                | (Tok.RELOP(_), _, strm') => factor_PROD_1(strm)
                | (Tok.ADDOP(_), _, strm') => factor_PROD_1(strm)
                | (Tok.MULOP(_), _, strm') => factor_PROD_1(strm)
                | (Tok.LP, _, strm') => factor_PROD_2(strm)
                | _ => fail()
              (* end case *))
          | (Tok.INT(_), _, strm') => factor_PROD_3(strm)
          | (Tok.LP, _, strm') => factor_PROD_5(strm)
          | _ => fail()
        (* end case *))
      end
and variable_NT (strm) = let
      fun variable_PROD_1 (strm) = let
            val (ID_RES, ID_SPAN, strm') = matchID(strm)
            val FULL_SPAN = (#1(ID_SPAN), #2(ID_SPAN))
            in
              ((ID_RES), FULL_SPAN, strm')
            end
      fun variable_PROD_2 (strm) = let
            val (ID_RES, ID_SPAN, strm') = matchID(strm)
            val (LSB_RES, LSB_SPAN, strm') = matchLSB(strm')
            val (exp_RES, exp_SPAN, strm') = exp_NT(strm')
            val (RSB_RES, RSB_SPAN, strm') = matchRSB(strm')
            val FULL_SPAN = (#1(ID_SPAN), #2(RSB_SPAN))
            in
              (UserCode.variable_PROD_2_ACT (ID_RES, LSB_RES, RSB_RES, exp_RES, ID_SPAN : (Lex.pos * Lex.pos), LSB_SPAN : (Lex.pos * Lex.pos), RSB_SPAN : (Lex.pos * Lex.pos), exp_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
                FULL_SPAN, strm')
            end
      in
        (case (lex(strm))
         of (Tok.ID(_), _, strm') =>
              (case (lex(strm'))
               of (Tok.KW_end, _, strm') => variable_PROD_1(strm)
                | (Tok.KW_then, _, strm') => variable_PROD_1(strm)
                | (Tok.KW_else, _, strm') => variable_PROD_1(strm)
                | (Tok.KW_do, _, strm') => variable_PROD_1(strm)
                | (Tok.ASSIGNOP, _, strm') => variable_PROD_1(strm)
                | (Tok.COMMA, _, strm') => variable_PROD_1(strm)
                | (Tok.SEMI, _, strm') => variable_PROD_1(strm)
                | (Tok.RSB, _, strm') => variable_PROD_1(strm)
                | (Tok.RP, _, strm') => variable_PROD_1(strm)
                | (Tok.RELOP(_), _, strm') => variable_PROD_1(strm)
                | (Tok.ADDOP(_), _, strm') => variable_PROD_1(strm)
                | (Tok.MULOP(_), _, strm') => variable_PROD_1(strm)
                | (Tok.LSB, _, strm') => variable_PROD_2(strm)
                | _ => fail()
              (* end case *))
          | _ => fail()
        (* end case *))
      end
fun procedure_statement_NT (strm) = let
      fun procedure_statement_PROD_1 (strm) = let
            val (ID_RES, ID_SPAN, strm') = matchID(strm)
            val FULL_SPAN = (#1(ID_SPAN), #2(ID_SPAN))
            in
              ((ID_RES), FULL_SPAN, strm')
            end
      fun procedure_statement_PROD_2 (strm) = let
            val (ID_RES, ID_SPAN, strm') = matchID(strm)
            val (LP_RES, LP_SPAN, strm') = matchLP(strm')
            val (exp_RES, exp_SPAN, strm') = exp_NT(strm')
            fun procedure_statement_PROD_2_SUBRULE_1_NT (strm) = let
                  val (COMMA_RES, COMMA_SPAN, strm') = matchCOMMA(strm)
                  val (exp_RES, exp_SPAN, strm') = exp_NT(strm')
                  val FULL_SPAN = (#1(COMMA_SPAN), #2(exp_SPAN))
                  in
                    ((exp_RES), FULL_SPAN, strm')
                  end
            fun procedure_statement_PROD_2_SUBRULE_1_PRED (strm) = (case (lex(strm))
                   of (Tok.COMMA, _, strm') => true
                    | _ => false
                  (* end case *))
            val (SR_RES, SR_SPAN, strm') = EBNF.closure(procedure_statement_PROD_2_SUBRULE_1_PRED, procedure_statement_PROD_2_SUBRULE_1_NT, strm')
            val (RP_RES, RP_SPAN, strm') = matchRP(strm')
            val FULL_SPAN = (#1(ID_SPAN), #2(RP_SPAN))
            in
              (UserCode.procedure_statement_PROD_2_ACT (ID_RES, LP_RES, RP_RES, SR_RES, exp_RES, ID_SPAN : (Lex.pos * Lex.pos), LP_SPAN : (Lex.pos * Lex.pos), RP_SPAN : (Lex.pos * Lex.pos), SR_SPAN : (Lex.pos * Lex.pos), exp_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
                FULL_SPAN, strm')
            end
      in
        (case (lex(strm))
         of (Tok.ID(_), _, strm') =>
              (case (lex(strm'))
               of (Tok.KW_end, _, strm') => procedure_statement_PROD_1(strm)
                | (Tok.KW_else, _, strm') => procedure_statement_PROD_1(strm)
                | (Tok.SEMI, _, strm') => procedure_statement_PROD_1(strm)
                | (Tok.LP, _, strm') => procedure_statement_PROD_2(strm)
                | _ => fail()
              (* end case *))
          | _ => fail()
        (* end case *))
      end
fun compound_statement_NT (strm) = let
      val (KW_begin_RES, KW_begin_SPAN, strm') = matchKW_begin(strm)
      fun compound_statement_PROD_1_SUBRULE_1_NT (strm) = let
            val (statement_RES, statement_SPAN, strm') = statement_NT(strm)
            fun compound_statement_PROD_1_SUBRULE_1_PROD_1_SUBRULE_1_NT (strm) = let
                  val (SEMI_RES, SEMI_SPAN, strm') = matchSEMI(strm)
                  val (statement_RES, statement_SPAN, strm') = statement_NT(strm')
                  val FULL_SPAN = (#1(SEMI_SPAN), #2(statement_SPAN))
                  in
                    ((statement_RES), FULL_SPAN, strm')
                  end
            fun compound_statement_PROD_1_SUBRULE_1_PROD_1_SUBRULE_1_PRED (strm) = (case (lex(strm))
                   of (Tok.SEMI, _, strm') => true
                    | _ => false
                  (* end case *))
            val (SR_RES, SR_SPAN, strm') = EBNF.closure(compound_statement_PROD_1_SUBRULE_1_PROD_1_SUBRULE_1_PRED, compound_statement_PROD_1_SUBRULE_1_PROD_1_SUBRULE_1_NT, strm')
            val FULL_SPAN = (#1(statement_SPAN), #2(SR_SPAN))
            in
              (UserCode.compound_statement_PROD_1_SUBRULE_1_PROD_1_ACT (SR_RES, KW_begin_RES, statement_RES, SR_SPAN : (Lex.pos * Lex.pos), KW_begin_SPAN : (Lex.pos * Lex.pos), statement_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
                FULL_SPAN, strm')
            end
      fun compound_statement_PROD_1_SUBRULE_1_PRED (strm) = (case (lex(strm))
             of (Tok.KW_begin, _, strm') => true
              | (Tok.KW_if, _, strm') => true
              | (Tok.KW_while, _, strm') => true
              | (Tok.ID(_), _, strm') => true
              | _ => false
            (* end case *))
      val (SR_RES, SR_SPAN, strm') = EBNF.optional(compound_statement_PROD_1_SUBRULE_1_PRED, compound_statement_PROD_1_SUBRULE_1_NT, strm')
      val (KW_end_RES, KW_end_SPAN, strm') = matchKW_end(strm')
      val FULL_SPAN = (#1(KW_begin_SPAN), #2(KW_end_SPAN))
      in
        (UserCode.compound_statement_PROD_1_ACT (SR_RES, KW_begin_RES, KW_end_RES, SR_SPAN : (Lex.pos * Lex.pos), KW_begin_SPAN : (Lex.pos * Lex.pos), KW_end_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
          FULL_SPAN, strm')
      end
and statement_NT (strm) = let
      fun statement_PROD_1 (strm) = let
            val (variable_RES, variable_SPAN, strm') = variable_NT(strm)
            val (ASSIGNOP_RES, ASSIGNOP_SPAN, strm') = matchASSIGNOP(strm')
            val (exp_RES, exp_SPAN, strm') = exp_NT(strm')
            val FULL_SPAN = (#1(variable_SPAN), #2(exp_SPAN))
            in
              (UserCode.statement_PROD_1_ACT (exp_RES, variable_RES, ASSIGNOP_RES, exp_SPAN : (Lex.pos * Lex.pos), variable_SPAN : (Lex.pos * Lex.pos), ASSIGNOP_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
                FULL_SPAN, strm')
            end
      fun statement_PROD_2 (strm) = let
            val (procedure_statement_RES, procedure_statement_SPAN, strm') = procedure_statement_NT(strm)
            val FULL_SPAN = (#1(procedure_statement_SPAN),
              #2(procedure_statement_SPAN))
            in
              ((procedure_statement_RES), FULL_SPAN, strm')
            end
      fun statement_PROD_3 (strm) = let
            val (compound_statement_RES, compound_statement_SPAN, strm') = compound_statement_NT(strm)
            val FULL_SPAN = (#1(compound_statement_SPAN),
              #2(compound_statement_SPAN))
            in
              ((compound_statement_RES), FULL_SPAN, strm')
            end
      fun statement_PROD_4 (strm) = let
            val (KW_if_RES, KW_if_SPAN, strm') = matchKW_if(strm)
            val (exp_RES, exp_SPAN, strm') = exp_NT(strm')
            val (KW_then_RES, KW_then_SPAN, strm') = matchKW_then(strm')
            val (statement1_RES, statement1_SPAN, strm') = statement_NT(strm')
            val (KW_else_RES, KW_else_SPAN, strm') = matchKW_else(strm')
            val (statement2_RES, statement2_SPAN, strm') = statement_NT(strm')
            val FULL_SPAN = (#1(KW_if_SPAN), #2(statement2_SPAN))
            in
              (UserCode.statement_PROD_4_ACT (exp_RES, KW_else_RES, KW_then_RES, statement1_RES, statement2_RES, KW_if_RES, exp_SPAN : (Lex.pos * Lex.pos), KW_else_SPAN : (Lex.pos * Lex.pos), KW_then_SPAN : (Lex.pos * Lex.pos), statement1_SPAN : (Lex.pos * Lex.pos), statement2_SPAN : (Lex.pos * Lex.pos), KW_if_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
                FULL_SPAN, strm')
            end
      fun statement_PROD_5 (strm) = let
            val (KW_while_RES, KW_while_SPAN, strm') = matchKW_while(strm)
            val (exp_RES, exp_SPAN, strm') = exp_NT(strm')
            val (KW_do_RES, KW_do_SPAN, strm') = matchKW_do(strm')
            val (statement_RES, statement_SPAN, strm') = statement_NT(strm')
            val FULL_SPAN = (#1(KW_while_SPAN), #2(statement_SPAN))
            in
              (UserCode.statement_PROD_5_ACT (exp_RES, KW_while_RES, KW_do_RES, statement_RES, exp_SPAN : (Lex.pos * Lex.pos), KW_while_SPAN : (Lex.pos * Lex.pos), KW_do_SPAN : (Lex.pos * Lex.pos), statement_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
                FULL_SPAN, strm')
            end
      in
        (case (lex(strm))
         of (Tok.KW_while, _, strm') => statement_PROD_5(strm)
          | (Tok.KW_begin, _, strm') => statement_PROD_3(strm)
          | (Tok.ID(_), _, strm') =>
              (case (lex(strm'))
               of (Tok.ASSIGNOP, _, strm') => statement_PROD_1(strm)
                | (Tok.LSB, _, strm') => statement_PROD_1(strm)
                | (Tok.KW_end, _, strm') => statement_PROD_2(strm)
                | (Tok.KW_else, _, strm') => statement_PROD_2(strm)
                | (Tok.SEMI, _, strm') => statement_PROD_2(strm)
                | (Tok.LP, _, strm') => statement_PROD_2(strm)
                | _ => fail()
              (* end case *))
          | (Tok.KW_if, _, strm') => statement_PROD_4(strm)
          | _ => fail()
        (* end case *))
      end
fun standard_type_NT (strm) = let
      fun standard_type_PROD_1 (strm) = let
            val (KW_integer_RES, KW_integer_SPAN, strm') = matchKW_integer(strm)
            val FULL_SPAN = (#1(KW_integer_SPAN), #2(KW_integer_SPAN))
            in
              (UserCode.standard_type_PROD_1_ACT (KW_integer_RES, KW_integer_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
                FULL_SPAN, strm')
            end
      fun standard_type_PROD_2 (strm) = let
            val (KW_real_RES, KW_real_SPAN, strm') = matchKW_real(strm)
            val FULL_SPAN = (#1(KW_real_SPAN), #2(KW_real_SPAN))
            in
              (UserCode.standard_type_PROD_2_ACT (KW_real_RES, KW_real_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
                FULL_SPAN, strm')
            end
      in
        (case (lex(strm))
         of (Tok.KW_real, _, strm') => standard_type_PROD_2(strm)
          | (Tok.KW_integer, _, strm') => standard_type_PROD_1(strm)
          | _ => fail()
        (* end case *))
      end
fun compound_type_NT (strm) = let
      fun compound_type_PROD_1 (strm) = let
            val (standard_type_RES, standard_type_SPAN, strm') = standard_type_NT(strm)
            val FULL_SPAN = (#1(standard_type_SPAN), #2(standard_type_SPAN))
            in
              ((standard_type_RES), FULL_SPAN, strm')
            end
      fun compound_type_PROD_2 (strm) = let
            val (KW_array_RES, KW_array_SPAN, strm') = matchKW_array(strm)
            val (LSB_RES, LSB_SPAN, strm') = matchLSB(strm')
            val (INT1_RES, INT1_SPAN, strm') = matchINT(strm')
            val (DOT1_RES, DOT1_SPAN, strm') = matchDOT(strm')
            val (DOT2_RES, DOT2_SPAN, strm') = matchDOT(strm')
            val (INT2_RES, INT2_SPAN, strm') = matchINT(strm')
            val (RSB_RES, RSB_SPAN, strm') = matchRSB(strm')
            val (KW_of_RES, KW_of_SPAN, strm') = matchKW_of(strm')
            val (standard_type_RES, standard_type_SPAN, strm') = standard_type_NT(strm')
            val FULL_SPAN = (#1(KW_array_SPAN), #2(standard_type_SPAN))
            in
              (UserCode.compound_type_PROD_2_ACT (LSB_RES, RSB_RES, DOT1_RES, DOT2_RES, INT1_RES, INT2_RES, KW_array_RES, standard_type_RES, KW_of_RES, LSB_SPAN : (Lex.pos * Lex.pos), RSB_SPAN : (Lex.pos * Lex.pos), DOT1_SPAN : (Lex.pos * Lex.pos), DOT2_SPAN : (Lex.pos * Lex.pos), INT1_SPAN : (Lex.pos * Lex.pos), INT2_SPAN : (Lex.pos * Lex.pos), KW_array_SPAN : (Lex.pos * Lex.pos), standard_type_SPAN : (Lex.pos * Lex.pos), KW_of_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
                FULL_SPAN, strm')
            end
      in
        (case (lex(strm))
         of (Tok.KW_array, _, strm') => compound_type_PROD_2(strm)
          | (Tok.KW_integer, _, strm') => compound_type_PROD_1(strm)
          | (Tok.KW_real, _, strm') => compound_type_PROD_1(strm)
          | _ => fail()
        (* end case *))
      end
fun id_list_NT (strm) = let
      val (ID_RES, ID_SPAN, strm') = matchID(strm)
      fun id_list_PROD_1_SUBRULE_1_NT (strm) = let
            val (COMMA_RES, COMMA_SPAN, strm') = matchCOMMA(strm)
            val (ID_RES, ID_SPAN, strm') = matchID(strm')
            val FULL_SPAN = (#1(COMMA_SPAN), #2(ID_SPAN))
            in
              ((ID_RES), FULL_SPAN, strm')
            end
      fun id_list_PROD_1_SUBRULE_1_PRED (strm) = (case (lex(strm))
             of (Tok.COMMA, _, strm') => true
              | _ => false
            (* end case *))
      val (SR_RES, SR_SPAN, strm') = EBNF.closure(id_list_PROD_1_SUBRULE_1_PRED, id_list_PROD_1_SUBRULE_1_NT, strm')
      val FULL_SPAN = (#1(ID_SPAN), #2(SR_SPAN))
      in
        (UserCode.id_list_PROD_1_ACT (ID_RES, SR_RES, ID_SPAN : (Lex.pos * Lex.pos), SR_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
          FULL_SPAN, strm')
      end
fun id_list_type_NT (strm) = let
      val (id_list_RES, id_list_SPAN, strm') = id_list_NT(strm)
      val (COLON_RES, COLON_SPAN, strm') = matchCOLON(strm')
      val (compound_type_RES, compound_type_SPAN, strm') = compound_type_NT(strm')
      val FULL_SPAN = (#1(id_list_SPAN), #2(compound_type_SPAN))
      in
        (UserCode.id_list_type_PROD_1_ACT (compound_type_RES, COLON_RES, id_list_RES, compound_type_SPAN : (Lex.pos * Lex.pos), COLON_SPAN : (Lex.pos * Lex.pos), id_list_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
          FULL_SPAN, strm')
      end
fun declaration_NT (strm) = let
      val (KW_var_RES, KW_var_SPAN, strm') = matchKW_var(strm)
      val (id_list_type_RES, id_list_type_SPAN, strm') = id_list_type_NT(strm')
      val (SEMI_RES, SEMI_SPAN, strm') = matchSEMI(strm')
      val FULL_SPAN = (#1(KW_var_SPAN), #2(SEMI_SPAN))
      in
        (UserCode.declaration_PROD_1_ACT (SEMI_RES, id_list_type_RES, KW_var_RES, SEMI_SPAN : (Lex.pos * Lex.pos), id_list_type_SPAN : (Lex.pos * Lex.pos), KW_var_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
          FULL_SPAN, strm')
      end
fun parameter_list_NT (strm) = let
      val (id_list_type_RES, id_list_type_SPAN, strm') = id_list_type_NT(strm)
      fun parameter_list_PROD_1_SUBRULE_1_NT (strm) = let
            val (SEMI_RES, SEMI_SPAN, strm') = matchSEMI(strm)
            val (id_list_type_RES, id_list_type_SPAN, strm') = id_list_type_NT(strm')
            val FULL_SPAN = (#1(SEMI_SPAN), #2(id_list_type_SPAN))
            in
              ((id_list_type_RES), FULL_SPAN, strm')
            end
      fun parameter_list_PROD_1_SUBRULE_1_PRED (strm) = (case (lex(strm))
             of (Tok.SEMI, _, strm') => true
              | _ => false
            (* end case *))
      val (SR_RES, SR_SPAN, strm') = EBNF.closure(parameter_list_PROD_1_SUBRULE_1_PRED, parameter_list_PROD_1_SUBRULE_1_NT, strm')
      val FULL_SPAN = (#1(id_list_type_SPAN), #2(SR_SPAN))
      in
        (UserCode.parameter_list_PROD_1_ACT (SR_RES, id_list_type_RES, SR_SPAN : (Lex.pos * Lex.pos), id_list_type_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
          FULL_SPAN, strm')
      end
fun arguments_NT (strm) = let
      fun arguments_PROD_1 (strm) = let
            val (LP_RES, LP_SPAN, strm') = matchLP(strm)
            val (parameter_list_RES, parameter_list_SPAN, strm') = parameter_list_NT(strm')
            val (RP_RES, RP_SPAN, strm') = matchRP(strm')
            val FULL_SPAN = (#1(LP_SPAN), #2(RP_SPAN))
            in
              (UserCode.arguments_PROD_1_ACT (LP_RES, RP_RES, parameter_list_RES, LP_SPAN : (Lex.pos * Lex.pos), RP_SPAN : (Lex.pos * Lex.pos), parameter_list_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
                FULL_SPAN, strm')
            end
      fun arguments_PROD_2 (strm) = let
            val FULL_SPAN = (Err.getPos(strm), Err.getPos(strm))
            in
              (UserCode.arguments_PROD_2_ACT (FULL_SPAN : (Lex.pos * Lex.pos)),
                FULL_SPAN, strm)
            end
      in
        (case (lex(strm))
         of (Tok.COLON, _, strm') => arguments_PROD_2(strm)
          | (Tok.SEMI, _, strm') => arguments_PROD_2(strm)
          | (Tok.LP, _, strm') => arguments_PROD_1(strm)
          | _ => fail()
        (* end case *))
      end
fun subprogram_head_NT (strm) = let
      fun subprogram_head_PROD_1 (strm) = let
            val (KW_function_RES, KW_function_SPAN, strm') = matchKW_function(strm)
            val (ID_RES, ID_SPAN, strm') = matchID(strm')
            val (arguments_RES, arguments_SPAN, strm') = arguments_NT(strm')
            val (COLON_RES, COLON_SPAN, strm') = matchCOLON(strm')
            val (standard_type_RES, standard_type_SPAN, strm') = standard_type_NT(strm')
            val (SEMI_RES, SEMI_SPAN, strm') = matchSEMI(strm')
            val FULL_SPAN = (#1(KW_function_SPAN), #2(SEMI_SPAN))
            in
              (UserCode.subprogram_head_PROD_1_ACT (ID_RES, SEMI_RES, standard_type_RES, COLON_RES, arguments_RES, KW_function_RES, ID_SPAN : (Lex.pos * Lex.pos), SEMI_SPAN : (Lex.pos * Lex.pos), standard_type_SPAN : (Lex.pos * Lex.pos), COLON_SPAN : (Lex.pos * Lex.pos), arguments_SPAN : (Lex.pos * Lex.pos), KW_function_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
                FULL_SPAN, strm')
            end
      fun subprogram_head_PROD_2 (strm) = let
            val (KW_procedure_RES, KW_procedure_SPAN, strm') = matchKW_procedure(strm)
            val (ID_RES, ID_SPAN, strm') = matchID(strm')
            val (arguments_RES, arguments_SPAN, strm') = arguments_NT(strm')
            val (SEMI_RES, SEMI_SPAN, strm') = matchSEMI(strm')
            val FULL_SPAN = (#1(KW_procedure_SPAN), #2(SEMI_SPAN))
            in
              (UserCode.subprogram_head_PROD_2_ACT (ID_RES, SEMI_RES, KW_procedure_RES, arguments_RES, ID_SPAN : (Lex.pos * Lex.pos), SEMI_SPAN : (Lex.pos * Lex.pos), KW_procedure_SPAN : (Lex.pos * Lex.pos), arguments_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
                FULL_SPAN, strm')
            end
      in
        (case (lex(strm))
         of (Tok.KW_procedure, _, strm') => subprogram_head_PROD_2(strm)
          | (Tok.KW_function, _, strm') => subprogram_head_PROD_1(strm)
          | _ => fail()
        (* end case *))
      end
fun subprogram_declaration_NT (strm) = let
      val (subprogram_head_RES, subprogram_head_SPAN, strm') = subprogram_head_NT(strm)
      fun subprogram_declaration_PROD_1_SUBRULE_1_NT (strm) = let
            val (declaration_RES, declaration_SPAN, strm') = declaration_NT(strm)
            val FULL_SPAN = (#1(declaration_SPAN), #2(declaration_SPAN))
            in
              ((declaration_RES), FULL_SPAN, strm')
            end
      fun subprogram_declaration_PROD_1_SUBRULE_1_PRED (strm) = (case (lex(strm))
             of (Tok.KW_var, _, strm') => true
              | _ => false
            (* end case *))
      val (SR_RES, SR_SPAN, strm') = EBNF.closure(subprogram_declaration_PROD_1_SUBRULE_1_PRED, subprogram_declaration_PROD_1_SUBRULE_1_NT, strm')
      val (compound_statement_RES, compound_statement_SPAN, strm') = compound_statement_NT(strm')
      val (SEMI_RES, SEMI_SPAN, strm') = matchSEMI(strm')
      val FULL_SPAN = (#1(subprogram_head_SPAN), #2(SEMI_SPAN))
      in
        (UserCode.subprogram_declaration_PROD_1_ACT (SR_RES, SEMI_RES, compound_statement_RES, subprogram_head_RES, SR_SPAN : (Lex.pos * Lex.pos), SEMI_SPAN : (Lex.pos * Lex.pos), compound_statement_SPAN : (Lex.pos * Lex.pos), subprogram_head_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
          FULL_SPAN, strm')
      end
fun program_NT (strm) = let
      val (KW_program_RES, KW_program_SPAN, strm') = matchKW_program(strm)
      val (ID_RES, ID_SPAN, strm') = matchID(strm')
      val (LP_RES, LP_SPAN, strm') = matchLP(strm')
      val (id_list_RES, id_list_SPAN, strm') = id_list_NT(strm')
      val (RP_RES, RP_SPAN, strm') = matchRP(strm')
      val (SEMI_RES, SEMI_SPAN, strm') = matchSEMI(strm')
      fun program_PROD_1_SUBRULE_1_NT (strm) = let
            val (declaration_RES, declaration_SPAN, strm') = declaration_NT(strm)
            val FULL_SPAN = (#1(declaration_SPAN), #2(declaration_SPAN))
            in
              ((declaration_RES), FULL_SPAN, strm')
            end
      fun program_PROD_1_SUBRULE_1_PRED (strm) = (case (lex(strm))
             of (Tok.KW_var, _, strm') => true
              | _ => false
            (* end case *))
      val (SR1_RES, SR1_SPAN, strm') = EBNF.closure(program_PROD_1_SUBRULE_1_PRED, program_PROD_1_SUBRULE_1_NT, strm')
      fun program_PROD_1_SUBRULE_2_NT (strm) = let
            val (subprogram_declaration_RES, subprogram_declaration_SPAN, strm') = subprogram_declaration_NT(strm)
            val FULL_SPAN = (#1(subprogram_declaration_SPAN),
              #2(subprogram_declaration_SPAN))
            in
              ((subprogram_declaration_RES), FULL_SPAN, strm')
            end
      fun program_PROD_1_SUBRULE_2_PRED (strm) = (case (lex(strm))
             of (Tok.KW_function, _, strm') => true
              | (Tok.KW_procedure, _, strm') => true
              | _ => false
            (* end case *))
      val (SR2_RES, SR2_SPAN, strm') = EBNF.closure(program_PROD_1_SUBRULE_2_PRED, program_PROD_1_SUBRULE_2_NT, strm')
      val (compound_statement_RES, compound_statement_SPAN, strm') = compound_statement_NT(strm')
      val (DOT_RES, DOT_SPAN, strm') = matchDOT(strm')
      val FULL_SPAN = (#1(KW_program_SPAN), #2(DOT_SPAN))
      in
        (UserCode.program_PROD_1_ACT (ID_RES, LP_RES, RP_RES, DOT_RES, SR1_RES, SR2_RES, SEMI_RES, compound_statement_RES, id_list_RES, KW_program_RES, ID_SPAN : (Lex.pos * Lex.pos), LP_SPAN : (Lex.pos * Lex.pos), RP_SPAN : (Lex.pos * Lex.pos), DOT_SPAN : (Lex.pos * Lex.pos), SR1_SPAN : (Lex.pos * Lex.pos), SR2_SPAN : (Lex.pos * Lex.pos), SEMI_SPAN : (Lex.pos * Lex.pos), compound_statement_SPAN : (Lex.pos * Lex.pos), id_list_SPAN : (Lex.pos * Lex.pos), KW_program_SPAN : (Lex.pos * Lex.pos), FULL_SPAN : (Lex.pos * Lex.pos)),
          FULL_SPAN, strm')
      end
in
  (program_NT)
end
val program_NT =  fn s => unwrap (Err.launch (eh, lexFn, program_NT , true) s)

in (program_NT) end
  in
fun parse lexFn  s = let val (program_NT) = mk lexFn in program_NT s end

  end

end