1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
|
(*
* This machine description now includes 64-bit and single precision
* floating point support. The description
* is copied from the book ``Alpha Architecture Reference Manual'' edited
* by Richard L. Sites, Digital Press, 1992.
*
* -- Allen Leung
*)
architecture Alpha =
struct
superscalar
little endian
lowercase assembly
(*
* This specify the cells interface
*)
storage
GP = $r[32] of 64 bits where $r[31] = 0
asm: (fn (30,_) => "$sp"
| (r,_) => "$"^Int.toString r
)
| FP = $f[32] of 64 bits where $f[31] = 0
asm: (fn (f,_) => "$f"^Int.toString f)
| CC = $cc[] of 64 bits aliasing GP asm: "cc"
| MEM = $m[] of 8 aggregable bits asm: (fn (r,_) => "m"^Int.toString r)
| CTRL = $ctrl[] asm: (fn (r,_) => "ctrl"^Int.toString r)
locations
stackptrR = $r[30]
and asmTmpR = $r[28]
and fasmTmp = $r[30]
and returnAddr = $r[26]
and r31 = $r[31]
and f31 = $f[31]
structure RTL =
struct
include "Tools/basis.mdl"
open Basis
infix 1 ||
infix 2 :=
infix 3 << >> ~>>
(* How to align addresses *)
fun align4 addr = andb(addr,notb 3)
fun align8 addr = andb(addr,notb 7)
fun align8Upper addr = orb(andb(addr,notb 7),4)
fun %% l = (l : #64 bits)
fun disp(b,d) = $r[b] + d
fun byte x = (x : #8 bits)
fun word x = (x : #16 bits)
fun dword x = (x : #32 bits)
fun qword x = (x : #64 bits)
fun float x = (x : #32 bits)
fun double x = (x : #64 bits)
rtl LDA{r,b,d} = $r[r] := $r[b] + d
rtl LDAH{r,b,d} = $r[r] := $r[b] + d << 16
(* Integer loads *)
rtl LDB{r,b,d,mem} = $r[r] := sx (byte $m[disp(b,d):mem])
rtl LDW{r,b,d,mem} = $r[r] := sx (word $m[disp(b,d):mem])
rtl LDBU{r,b,d,mem} = $r[r] := zx (byte $m[disp(b,d):mem])
rtl LDWU{r,b,d,mem} = $r[r] := zx (word $m[disp(b,d):mem])
rtl LDL{r,b,d,mem} = $r[r] := sx (dword $m[disp(b,d):mem])
rtl LDL_L{r,b,d,mem} = $r[r] := sx (dword $m[align4(disp(b,d)):mem])
rtl LDQ{r,b,d,mem} = $r[r] := qword $m[disp(b,d):mem]
rtl LDQ_L{r,b,d,mem} = $r[r] := qword $m[align8(disp(b,d)):mem]
rtl LDQ_U{r,b,d,mem} = $r[r] := qword $m[align8Upper(disp(b,d)):mem]
(* Integer stores *)
rtl STB{r,b,d,mem} = $m[disp(b,d):mem] := $r[r] at [0..7]
rtl STW{r,b,d,mem} = $m[disp(b,d):mem] := $r[r] at [0..15]
rtl STL{r,b,d,mem} = $m[disp(b,d):mem] := $r[r] at [0..31]
rtl STQ{r,b,d,mem} = $m[disp(b,d):mem] := $r[r]
rtl STQ_U{r,b,d,mem} = $m[align8(disp(b,d)):mem] := $r[r]
(* Floating point loads *)
rtl LDF{r,b,d,mem} = $f[r] := sx (float $m[disp(b,d):mem])
rtl LDG{r,b,d,mem} = $f[r] := double $m[disp(b,d):mem]
rtl LDS{r,b,d,mem} = $f[r] := double $m[disp(b,d):mem]
rtl LDT{r,b,d,mem} = $f[r] := double $m[disp(b,d):mem]
(* Floating point stores *)
rtl STF{r,b,d,mem} = $m[disp(b,d):mem] := float(sx $f[r])
rtl STG{r,b,d,mem} = $m[disp(b,d):mem] := $f[r]
rtl STS{r,b,d,mem} = $m[disp(b,d):mem] := $f[r]
rtl STT{r,b,d,mem} = $m[disp(b,d):mem] := $f[r]
(* Integer operators *)
rtl ADDL{ra,rb,rc} = $r[rc] := sx($r[ra] + rb)
rtl ADDQ{ra,rb,rc} = $r[rc] := $r[ra] + rb
fun cmp oper {ra,rb,rc} = $r[rc] := cond(oper($r[ra],rb), 1, 0)
rtl [CMPBGE, CMPEQ, CMPLE, CMPLT, CMPULE, CMPULT] =
map cmp [(>=), (==), (<=), (<), (leu), (ltu)]
fun binop oper {ra,rb,rc} = $r[rc] := oper($r[ra], rb)
rtl SUBL{ra,rb,rc} = $r[rc] := sx($r[ra] - rb)
rtl SUBQ{ra,rb,rc} = $r[rc] := $r[ra] - rb
rtl S4ADDL{ra,rb,rc} = $r[rc] := sx($r[ra] << 2 + rb)
rtl S4ADDQ{ra,rb,rc} = $r[rc] := $r[ra] << 2 + rb
rtl S4SUBL{ra,rb,rc} = $r[rc] := sx($r[ra] << 2 - rb)
rtl S4SUBQ{ra,rb,rc} = $r[rc] := $r[ra] << 2 - rb
rtl S8ADDL{ra,rb,rc} = $r[rc] := sx($r[ra] << 3 + rb)
rtl S8ADDQ{ra,rb,rc} = $r[rc] := $r[ra] << 3 + rb
rtl S8SUBL{ra,rb,rc} = $r[rc] := sx($r[ra] << 3 - rb)
rtl S8SUBQ{ra,rb,rc} = $r[rc] := $r[ra] << 3 - rb
rtl AND{ra,rb,rc} = $r[rc] := andb($r[ra], rb)
rtl BIC{ra,rb,rc} = $r[rc] := andb($r[ra], notb(rb)) (* XXX *)
rtl BIS{ra,rb,rc} = $r[rc] := orb($r[ra], rb)
rtl EQV{ra,rb,rc} = $r[rc] := eqvb($r[ra], rb)
rtl ORNOT{ra,rb,rc} = $r[rc] := orb($r[ra], notb(rb))
rtl XOR{ra,rb,rc} = $r[rc] := xorb($r[ra], rb)
rtl extbl extlh extll extqh extql extwh extwl insbl inslh insll
insqh insql inswh inswl mskbl msklh mskll mskqh mskql mskwh mskwl
: #n bits * #n bits -> #n bits
rtl [EXTBL, EXTLH, EXTLL, EXTQH, EXTQL, EXTWH, EXTWL,
INSBL, INSLH, INSLL, INSQH, INSQL, INSWH, INSWL,
MSKBL, MSKLH, MSKLL, MSKQH, MSKQL, MSKWH, MSKWL] =
map binop
[extbl, extlh, extll, extqh, extql, extwh, extwl,
insbl, inslh, insll, insqh, insql, inswh, inswl,
mskbl, msklh, mskll, mskqh, mskql, mskwh, mskwl]
rtl [SLL, SRA, SRL] =
map binop [(<<), (~>>), (>>)]
rtl zap zapnot umulh : #n bits * #n bits -> #n bits
rtl ZAP{ra,rb,rc} = $r[rc] := zap($r[ra], rb)
rtl ZAPNOT{ra,rb,rc} = $r[rc] := zapnot($r[ra], rb)
rtl MULL{ra,rb,rc} = $r[rc] := sx(muls($r[ra], rb))
rtl MULQ{ra,rb,rc} = $r[rc] := muls($r[ra], rb)
rtl UMULH{ra,rb,rc} = $r[rc] := umulh($r[ra], rb)
(* Integer trapping operators *)
val overflowtrap = ()
rtl ADDLV{ra,rb,rc} = ADDL{ra,rb,rc} || overflowtrap
rtl ADDQV{ra,rb,rc} = ADDQ{ra,rb,rc} || overflowtrap
rtl SUBLV{ra,rb,rc} = SUBL{ra,rb,rc} || overflowtrap
rtl SUBQV{ra,rb,rc} = SUBQ{ra,rb,rc} || overflowtrap
rtl MULLV{ra,rb,rc} = MULL{ra,rb,rc} || overflowtrap
rtl MULQV{ra,rb,rc} = MULQ{ra,rb,rc} || overflowtrap
fun lbc(x,y) = andb(x,1) == y
fun lbs(x,y) = andb(x,1) <> y
val comparisons = [(==), lbc, lbs, (>=), (>), (<=), (<), (<>)]
(* Conditional moves *)
fun cmov oper {ra,rb,rc} = if oper($r[ra], 0) then $r[rc] := rb else ()
rtl CMOV ^^ [EQ, LBC, LBS, GE, GT, LE, LT, NE] =
map cmov comparisons
(* Integer branches *)
rtl BR{lab} = Jmp(%%lab)
rtl BSR{lab,r,defs,uses,mem} =
Call(%%lab) ||
Kill $r[r] ||
Kill $cellset[defs] ||
Use $cellset[uses] ||
$m[??? :mem] := ($m[??? :mem] : #8 bits)
fun branch oper {r,lab} = if oper($r[r], 0) then Jmp(%%lab) else ()
rtl [BEQ, BLBC, BLBS, BGE, BGT, BLE, BLT, BNE] =
map branch comparisons
(* Floating point operators *)
val SU = ()
val SUD = ()
fun farith oper {fa,fb,fc} = $f[fc] := oper($f[fa], $f[fb])
fun funary oper {fb,fc} = $f[fc] := oper($f[fb])
rtl fops as [ADDS, ADDT, SUBS, SUBT, MULS, MULT, DIVS, DIVT] =
map farith
[fadd, fadd, fsub, fsub, fmul, fmul, fdiv, fdiv]
fun su fop {fa,fb,fc} = fop{fa,fb,fc} || SU
fun sud fop {fa,fb,fc} = fop{fa,fb,fc} || SUD
rtl [ADDSSU, ADDTSU, SUBSSU, SUBTSU, MULSSU, MULTSU, DIVSSU, DIVTSU] =
map su fops
rtl [ADDSSUD, ADDTSUD, SUBSSUD, SUBTSUD,
MULSSUD, MULTSUD, DIVSSUD, DIVTSUD] =
map sud fops
rtl cpys cpyse cpysn mf_fpcr mt_fpcr : #64 bits * #64 bits -> #64 bits
rtl [CPYS,CPYSE, CPYSN, MF_FPCR, MT_FPCR] =
map farith [cpys, cpyse, cpysn, mf_fpcr, mt_fpcr]
rtl cvtlq cvtql cvtqlsv cvtqlv cvtqs cvtqsc
cvtqt cvtqtc cvtts cvttsc
cvtst cvtsts cvttq cvttqc : #64 bits -> #64 bits
rtl CVT^^[LQ,QL,QLSV,QLV,QS,QSC,QT,QTC,TS,TSC,ST,STS,TQ,TQC] =
map funary cvt^^[lq,ql,qlsv,qlv,qs,qsc,qt,qtc,ts,tsc,st,sts,tq,tqc]
rtl teq tlt tle tun : #64 bits * #64 bits -> #64 bits
rtl fcmps as [CMPTEQ, CMPTLT, CMPTLE, CMPTUN] =
map farith [teq, tlt, tle, tun]
rtl [CMPTEQSU, CMPTLTSU, CMPTLESU, CMPTUNSU] =
map su fcmps
(* Floating point branches *)
fun fbranch oper {f,lab} = if oper($f[f],???) then Jmp(%%lab) else ()
rtl [FBEQ, FBLT, FBLE, FBNE, FBGE, FBGT] =
map fbranch [|==|, |<|, |<=|, |<>|, |>=|, |>|]
(* Floating point moves *)
fun fcmove cmp {fa,fb,fc} =
if cmp($f[fa],???) then $f[fc] := $f[fb] else ()
rtl FCMOV ^^ [EQ, LT, LE, NE, GE, GT] =
map fcmove [|==|, |<|, |<=|, |<>|, |>=|, |>|]
(* Call/return *)
rtl JSR{r,b,defs,uses,mem} =
Call($r[b]) ||
Kill $r[r] ||
Kill $cellset[defs] ||
Use $cellset[uses] ||
$m[??? :mem] := ($m[??? :mem] : #8 bits)
rtl RET{r,b} = Jmp($r[b]) || Kill $r[r]
rtl JMPL{r,b} = Jmp($r[b]) || Kill $r[r]
rtl TRAPB{} = ()
(* Pseudo arithmetic *)
fun pseudoOp oper {ra,rb,rc,tmps} =
$r[rc] := oper($r[ra], rb) ||
Kill $cellset[tmps] (* XXX *)
rtl PSEUDOARITH_ ^^ [ DIVL, DIVLU, DIVQ, DIVQU,
REML, REMLU, REMQ, REMQU ] =
map pseudoOp [ divs, divu, divs, divu, (* XXX *)
rems, remu, rems, remu ]
(* Pal code
* Note: I have no idea what these things are, so I'm just going
* fake them
*)
rtl BPT BUGCHK CALLSYS GENTRAP IMB RDUNIQUE WRUNIQUE : #64 bits -> #64 bits
fun CALL_PAL code {def,use} =
Call(qword(code(qword 0))) ||
Kill $cellset[def] ||
Use $cellset[use]
rtl CALL_PAL_ ^^
[BPT, BUGCHK, CALLSYS, GENTRAP, IMB, RDUNIQUE, WRUNIQUE] =
map CALL_PAL
[BPT, BUGCHK, CALLSYS, GENTRAP, IMB, RDUNIQUE, WRUNIQUE]
end (* RTL *)
(*
* Reservation tables and pipeline definitions for scheduling
*)
(* Function units *)
resource issue and mem and alu and falu and fmul and fdiv and branch
(* Different implementations of cpus *)
cpu default 2 [2 issue, 2 mem, 1 alu] (* 2 issue machine *)
(* Definitions of various reservation tables *)
pipeline NOP _ = [issue]
and ARITH _ = [issue^^alu]
and LOAD _ = [issue^^mem]
and STORE _ = [issue^^mem,mem,mem]
and FARITH _ = [issue^^falu]
and FMUL _ = [issue^^fmul,fmul]
and FDIV _ = [issue^^fdiv,fdiv*50]
and BRANCH _ = [issue^^branch]
(*
* We now specify the instruction representation, assembly,
* machine code encoding and ``semantics''
*)
structure Instruction =
struct
datatype ea =
Direct of $GP
| FDirect of $FP
| Displace of {base: $GP, disp: T.labexp, mem: Region.region}
datatype operand =
REGop of $GP ``<GP>'' rtl: $r[GP]
| IMMop of int ``<int>'' rtl: immed int
| HILABop of T.labexp ``hi(<labexp>)'' rtl: hi(labexp)
| LOLABop of T.labexp ``lo(<labexp>)'' rtl: lo(labexp)
| LABop of T.labexp ``<labexp>'' rtl: labexp
(*
* When I say ! after the datatype name XXX, it means generate a
* function emit_XXX that converts the constructors into the corresponding
* assembly text. By default, it uses the same name as the constructor,
* but may be modified by the lowercase/uppercase assembly directive.
*
*)
datatype branch! = (* table C-2 *)
BR 0x30
(*| BSR 0x34 *)
| BLBC 0x38
| BEQ 0x39 | BLT 0x3a | BLE 0x3b
| BLBS 0x3c | BNE 0x3d | BGE 0x3e
| BGT 0x3f
datatype fbranch! = (* table C-2 *)
FBEQ 0x31 | FBLT 0x32
| FBLE 0x33 | FBNE 0x35
| FBGE 0x36 | FBGT 0x37
datatype load! = (* table C-1 *)
LDB
| LDW
| LDBU 0x02
| LDWU 0x04
| LDL 0x28
| LDL_L 0x2A
| LDQ 0x29
| LDQ_L 0x2B
| LDQ_U 0x0B
datatype store! = STB 0x0E | STW 0x0D | STL 0x2C | STQ 0x2D | STQ_U 0x0F
datatype fload [0x20..0x23] ! = LDF | LDG | LDS | LDT
datatype fstore [0x24..0x27] ! = STF | STG | STS | STT
(* non-trapping opcodes *)
datatype operate! = (* table C-5 *)
ADDL (0wx10,0wx00) | ADDQ (0wx10,0wx20)
| CMPBGE(0wx10,0wx0f) | CMPEQ (0wx10,0wx2d)
| CMPLE (0wx10,0wx6d) | CMPLT (0wx10,0wx4d) | CMPULE (0wx10,0wx3d)
| CMPULT(0wx10,0wx1d) | SUBL (0wx10,0wx09)
| SUBQ (0wx10,0wx29)
| S4ADDL(0wx10,0wx02) | S4ADDQ (0wx10,0wx22) | S4SUBL (0wx10,0wx0b)
| S4SUBQ(0wx10,0wx2b) | S8ADDL (0wx10,0wx12) | S8ADDQ (0wx10,0wx32)
| S8SUBL(0wx10,0wx1b) | S8SUBQ (0wx10,0wx3b)
| AND (0wx11,0wx00) | BIC (0wx11,0wx08) | BIS (0wx11,0wx20)
| EQV (0wx11,0wx48)
| ORNOT (0wx11,0wx28) | XOR (0wx11,0wx40)
| EXTBL (0wx12,0wx06) | EXTLH (0wx12,0wx6a) | EXTLL(0wx12,0wx26)
| EXTQH (0wx12,0wx7a) | EXTQL (0wx12,0wx36) | EXTWH(0wx12,0wx5a)
| EXTWL (0wx12,0wx16) | INSBL (0wx12,0wx0b) | INSLH(0wx12,0wx67)
| INSLL (0wx12,0wx2b) | INSQH (0wx12,0wx77) | INSQL(0wx12,0wx3b)
| INSWH (0wx12,0wx57) | INSWL (0wx12,0wx1b) | MSKBL(0wx12,0wx02)
| MSKLH (0wx12,0wx62) | MSKLL (0wx12,0wx22) | MSKQH(0wx12,0wx72)
| MSKQL (0wx12,0wx32) | MSKWH (0wx12,0wx52) | MSKWL(0wx12,0wx12)
| SLL (0wx12,0wx39) | SRA (0wx12,0wx3c) | SRL (0wx12,0wx34)
| ZAP (0wx12,0wx30) | ZAPNOT (0wx12,0wx31)
| MULL (0wx13,0wx00) | MULQ (0wx13,0wx20)
| UMULH (0wx13,0wx30)
(* conditional moves *)
datatype cmove! =
CMOVEQ 0wx24 | CMOVLBC 0wx16 | CMOVLBS 0wx14
| CMOVGE 0wx46 | CMOVGT 0wx66 | CMOVLE 0wx64
| CMOVLT 0wx44 | CMOVNE 0wx26
datatype pseudo_op! = DIVL | DIVLU | DIVQ | DIVQU
| REML | REMLU | REMQ | REMQU
datatype operateV! = (* table C-5 opc/func *)
ADDLV (0wx10,0wx40) | ADDQV (0wx10,0wx60)
| SUBLV (0wx10,0wx49) | SUBQV (0wx10,0wx69)
| MULLV (0wx13,0wx40) | MULQV (0wx13,0wx60)
datatype funary! = (* table C-6/C-7 *)
(* C-6 *)
CVTLQ (0wx17,0wx010) | CVTQL (0wx17,0wx030) | CVTQLSV (0wx17,0wx530)
| CVTQLV (0wx17,0wx130)
(* C-7 *)
| CVTQS (0wx16,0wxbc) | CVTQSC (0wx16,0wx3c)
| CVTQT (0wx16,0wxbe) | CVTQTC (0wx16,0wx3e)
| CVTTS (0wx16,0wxac) | CVTTSC (0wx16,0wx2c)
| CVTST (0wx16,0wx2ac) | CVTSTS (0wx16,0wx6ac)
| CVTTQ (0wx16,0wxaf) | CVTTQC (0wx16,0wx2f)
datatype foperate! = (* table C-6 *)
CPYS (0wx17,0wx20) | CPYSE (0wx17,0wx022) | CPYSN (0wx17,0wx021)
| MF_FPCR (0wx17,0wx025) | MT_FPCR (0wx17,0wx024)
(* table C-7 *)
| CMPTEQ (0wx16,0wx0a5) | CMPTLT (0wx16,0wx0a6) | CMPTLE (0wx16,0wx0a7)
| CMPTUN (0wx16,0wx0a4)
| CMPTEQSU(0wx16,0wx5a5) | CMPTLTSU(0wx16,0wx5a6) |CMPTLESU(0wx16,0wx5a7)
| CMPTUNSU(0wx16,0wx5a4)
| ADDS (0wx16,0wx080) | ADDT (0wx16,0wx0a0)
| DIVS (0wx16,0wx083) | DIVT (0wx16,0wx0a3)
| MULS (0wx16,0wx082) | MULT (0wx16,0wx0a2)
| SUBS (0wx16,0wx081) | SUBT (0wx16,0wx0a1)
datatype fcmove! =
FCMOVEQ 0wx02a | FCMOVGE 0wx02d | FCMOVGT 0wx02f
| FCMOVLE 0wx02e | FCMOVLT 0wx02c | FCMOVNE 0wx02b
datatype foperateV! = (* table C-7 *)
ADDSSUD 0wx5c0 | ADDSSU 0wx580
| ADDTSUD 0wx5e0 | ADDTSU 0wx5a0
| DIVSSUD 0wx5c3 | DIVSSU 0wx583
| DIVTSUD 0wx5e3 | DIVTSU 0wx5a3
| MULSSUD 0wx5c2 | MULSSU 0wx582
| MULTSUD 0wx5e2 | MULTSU 0wx5a2
| SUBSSUD 0wx5c1 | SUBSSU 0wx581
| SUBTSUD 0wx5e1 | SUBTSU 0wx5a1
datatype osf_user_palcode! =
BPT 0x80 | BUGCHK 0x81 | CALLSYS 0x83
| GENTRAP 0xaa | IMB 0x86 | RDUNIQUE 0x9e | WRUNIQUE 0x9f
type addressing_mode = CellsBasis.cell * operand
end (* Instruction *)
(*
* Alpha has very simple instruction encoding formats.
*)
instruction formats 32 bits
Memory{opc:6, ra:5, rb:GP 5, disp: signed 16} (* p3-9 *)
(* derived from Memory *)
| Split{le} = let val i = MLTreeEval.valueOf le
val w = itow i
val hi = w ~>> 0w16
val lo = w && 0w65535
in if lo < 0w32768 then (hi,lo) else (hi+0w1,lo-0w65536)
end
| High{le} = let val (hi,_) = Split{le=le} in hi end
| Low{le} = let val (_,lo) = Split{le=le} in lo end
| LoadStore{opc,ra,rb,disp} =
let val disp =
case disp of
I.REGop rb => emit_GP rb
| I.IMMop i => itow i
| I.HILABop le => High{le=le}
| I.LOLABop le => Low{le=le}
| I.LABop le => itow(MLTreeEval.valueOf le)
in Memory{opc,ra,rb,disp}
end
| ILoadStore{opc,r:GP,b,d} = LoadStore{opc,ra=r,rb=b,disp=d}
| FLoadStore{opc,r:FP,b,d} = LoadStore{opc,ra=r,rb=b,disp=d}
| Jump{opc:6=0wx1a,ra:GP 5,rb:GP 5,h:2,disp:int signed 14} (* table C-3 *)
| Memory_fun{opc:6, ra:GP 5, rb:GP 5, func:16} (* p3-9 *)
| Branch{opc:branch 6, ra:GP 5, disp:signed 21} (* p3-10 *)
| Bsr{opc:6=0wx34, ra:GP 5, disp:signed 21} (* p3-10 *)
| Fbranch{opc:fbranch 6, ra:FP 5, disp:signed 21} (* p3-10 *)
(* p3-11 *)
| Operate0{opc:6,ra:GP 5,rb:GP 5,sbz:13..15=0,_:1=0,func:5..11,rc:GP 5}
(* p3-11 *)
| Operate1{opc:6,ra:GP 5,lit:signed 13..20,_:1=1,func:5..11,rc:GP 5}
| Operate{opc,ra,rb,func,rc} =
(case rb of
I.REGop rb => Operate0{opc,ra,rb,func,rc}
| I.IMMop i => Operate1{opc,ra,lit=itow i,func,rc}
| I.HILABop le => Operate1{opc,ra,lit=High{le=le},func,rc}
| I.LOLABop le => Operate1{opc,ra,lit=Low{le=le},func,rc}
| I.LABop le => Operate1{opc,ra,lit=itow(MLTreeEval.valueOf le),func,rc}
)
| Foperate{opc:6,fa:FP 5,fb:FP 5,func:5..15,fc:FP 5}
| Funary{opc:6,fa:5=31,fb:FP 5,func:5..15,fc:FP 5}
| Pal{opc:6=0,func:26}
structure MC =
struct
(* compute displacement address *)
fun disp lab = itow(Label.addrOf lab - !loc - 4) ~>> 0w2
val zeroR = Option.valOf(C.zeroReg CellsBasis.GP)
end
structure Assembly =
struct
fun isZero(I.LABop le) = MLTreeEval.valueOf le = 0
| isZero _ = false
end
(*
* The main instruction set definition consists of the following:
* 1) constructor-like declaration defines the view of the instruction,
* 2) assembly directive in funny quotes `` '',
* 3) machine encoding expression,
* 4) delay slot directives etc (not necessary in this architecture)
*)
instruction
(* Load/Store *)
LDA of {r: $GP, b: $GP, d:operand} (* use of REGop is illegal *)
asm: if isZero d andalso CellsBasis.sameCell(r,b) then ()
else (``lda\t<r>, <d>'';
if CellsBasis.registerId b = 31 then () else ``(<b>)''
)
mc: ILoadStore{opc=0w08,r,b,d}
rtl: ``LDA''
| LDAH of {r: $GP, b: $GP, d:operand} (* use of REGop is illegal *)
asm: (``ldah\t<r>, <d>'';
if CellsBasis.registerId b = 31 then () else ``(<b>)''
)
mc: ILoadStore{opc=0w09,r,b,d}
rtl: ``LDAH''
| LOAD of {ldOp:load, r: $GP, b: $GP, d:operand, mem:Region.region}
asm: ``<ldOp>\t<r>, <d>(<b>)<mem>''
mc: ILoadStore{opc=emit_load ldOp,r,b,d}
rtl: ``<ldOp>''
latency: 1
| STORE of {stOp:store, r: $GP, b: $GP, d:operand, mem:Region.region}
asm: ``<stOp>\t<r>, <d>(<b>)<mem>''
mc: ILoadStore{opc=emit_store stOp,r,b,d}
rtl: ``<stOp>''
| FLOAD of {ldOp:fload, r: $FP, b: $GP, d:operand, mem:Region.region}
asm: ``<ldOp>\t<r>, <d>(<b>)<mem>''
mc: FLoadStore{opc=emit_fload ldOp,r,b,d}
rtl: ``<ldOp>''
latency: 1
| FSTORE of {stOp:fstore, r: $FP, b: $GP, d:operand, mem:Region.region}
asm: ``<stOp>\t<r>, <d>(<b>)<mem>''
mc: FLoadStore{opc=emit_fstore stOp,r,b,d}
rtl: ``<stOp>''
(* Control Instructions *)
| JMPL of {r: $GP, b: $GP, d:int} * Label.label list
asm: ``jmp\t<r>, (<b>)''
mc: Jump{h=0w0,ra=r,rb=b,disp=d} (* table C-3 *)
rtl: ``JMPL''
| JSR of {r: $GP, b: $GP, d:int,
defs: $cellset, uses: $cellset, cutsTo: Label.label list,
mem:Region.region}
asm: ``jsr\t<r>, (<b>)<mem><emit_defs(defs)><emit_uses(uses)><emit_cutsTo cutsTo>''
mc: Jump{h=0w1,ra=r,rb=b,disp=d}
rtl: ``JSR''
| BSR of {r: $GP, lab: Label.label,
defs: $cellset, uses: $cellset, cutsTo: Label.label list,
mem:Region.region}
asm: ``bsr\t<r>, <lab><mem><emit_defs(defs)><emit_uses(uses)><emit_cutsTo cutsTo>''
mc: Bsr{ra=r,disp=disp lab}
rtl: ``BSR''
| RET of {r: $GP, b: $GP, d:int}
asm: ``ret\t<r>, (<b>)''
mc: Jump{h=0w2,ra=r,rb=b,disp=d}
rtl: ``RET''
| BRANCH of {b:branch, r: $GP, lab:Label.label}
asm: ``<b>\t<r>, <lab>''
mc: Branch{opc=b,ra=r,disp=disp lab}
rtl: ``<b>''
| FBRANCH of {b:fbranch, f: $FP, lab:Label.label}
asm: ``<b>\t<f>, <lab>''
mc: Fbranch{opc=b,ra=f,disp=disp lab}
rtl: ``<b>''
(* Integer Operate *)
| OPERATE of {oper:operate, ra: $GP, rb:operand, rc: $GP}
(* Pretty print ldgp differently *)
asm: let fun disp() = ``<oper>\t<ra>, <rb>, <rc>''
in case (oper,CellsBasis.registerId ra,rb,CellsBasis.registerId rc) of
(I.BIS,27,I.REGop rb,29) =>
if CellsBasis.registerId rb = 31 then ``ldgp\t$29, 0($27)''
else disp()
| (I.BIS,26,I.REGop rb,29) =>
if CellsBasis.registerId rb = 31 then ``ldgp\t$29, 0($26)''
else disp()
| _ => disp()
end
mc: let val (opc,func) = emit_operate oper
in Operate{opc,func,ra,rb,rc}
end
rtl: ``<oper>''
| OPERATEV of {oper:operateV, ra: $GP, rb:operand, rc: $GP}
asm: ``<oper>\t<ra>, <rb>, <rc>''
mc: let val (opc,func) = emit_operateV oper
in Operate{opc,func,ra,rb,rc}
end
rtl: ``<oper>''
| CMOVE of {oper:cmove, ra: $GP, rb:operand, rc: $GP}
asm: ``<oper>\t<ra>, <rb>, <rc>''
mc: Operate{opc=0wx11,func=emit_cmove oper,ra,rb,rc}
rtl: ``<oper>''
| PSEUDOARITH of {oper: pseudo_op, ra: $GP, rb:operand, rc: $GP,
tmps: $cellset}
asm: ``<oper>\t<ra>, <rb>, <rc><emit_cellset("tmps",tmps)>''
rtl: ``PSEUDOARITH_<oper>''
(* Floating Point Unary Operation *)
| FUNARY of {oper:funary, fb: $FP, fc: $FP}
asm: ``<oper>\t<fb>, <fc>''
mc: let val (opc,func) = emit_funary oper
in Funary{opc,func,fb,fc}
end
rtl: ``<oper>''
(* Floating Point Operate *)
| FOPERATE of {oper:foperate, fa: $FP, fb: $FP, fc: $FP}
asm: ``<oper>\t<fa>, <fb>, <fc>''
mc: let val (opc,func) = emit_foperate oper
in Foperate{opc,func,fa,fb,fc}
end
rtl: ``<oper>''
(* Trapping versions of the above (what trap -- allen) ??? *)
| FOPERATEV of {oper:foperateV, fa: $FP, fb: $FP, fc: $FP}
asm: ``<oper>\t<fa>, <fb>, <fc>''
mc: Foperate{opc=0wx16,func=emit_foperateV oper,fa,fb,fc}
rtl: ``<oper>''
| FCMOVE of {oper:fcmove, fa: $FP, fb: $FP, fc: $FP}
asm: ``<oper>\t<fa>, <fb>, <fc>''
mc: Foperate{opc=0wx17,func=emit_fcmove oper,fa,fb,fc}
rtl: ``<oper>''
(* Misc *)
| TRAPB (* Trap barrier *)
asm: ``trapb''
mc: Memory_fun{opc=0wx18,ra=zeroR,rb=zeroR,func=0wx0}
rtl: ``TRAPB''
| CALL_PAL of {code:osf_user_palcode, def: $cellset, use: $cellset}
asm: ``call_pal <code>''
mc: Pal{func=emit_osf_user_palcode code}
rtl: ``CALL_PAL_<code>''
| SOURCE of {}
asm: ``source''
mc: ()
| SINK of {}
asm: ``sink''
mc: ()
| PHI of {}
asm: ``phi''
mc: ()
structure SSA =
struct
fun operand(ty, I.REGop r) = T.REG(ty, r)
| operand(ty, I.IMMop i) = T.LI(IntInf.fromInt i)
| operand(ty, _) = error "operand"
end
end
|