File: alpha.mdl

package info (click to toggle)
smlnj 110.79-8
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid
  • size: 82,564 kB
  • sloc: ansic: 32,532; asm: 6,314; sh: 2,296; makefile: 1,821; perl: 1,170; pascal: 295; yacc: 190; cs: 78; python: 77; lisp: 19
file content (657 lines) | stat: -rw-r--r-- 24,577 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
(* 
 * This machine description now includes 64-bit and single precision 
 * floating point support.  The description
 * is copied from the book ``Alpha Architecture Reference Manual'' edited
 * by Richard L. Sites, Digital Press, 1992.
 *
 * -- Allen Leung
 *)
architecture Alpha =
struct

   superscalar

   little endian    

   lowercase assembly

   (*
    * This specify the cells interface 
    *)
   storage
     GP = $r[32] of 64 bits where $r[31] = 0
              asm: (fn (30,_) => "$sp"
                     | (r,_)  => "$"^Int.toString r
                   )
   | FP = $f[32] of 64 bits where $f[31] = 0
              asm: (fn (f,_) => "$f"^Int.toString f)
   | CC = $cc[] of 64 bits aliasing GP asm: "cc"
   | MEM = $m[] of 8 aggregable bits asm: (fn (r,_) => "m"^Int.toString r)
   | CTRL = $ctrl[] asm: (fn (r,_) => "ctrl"^Int.toString r)

   locations
       stackptrR  = $r[30]
   and asmTmpR    = $r[28]
   and fasmTmp    = $r[30]
   and returnAddr = $r[26]
   and r31        = $r[31]
   and f31        = $f[31]

   structure RTL =
   struct
     include "Tools/basis.mdl"
     open Basis
     infix 1 ||
     infix 2 := 
     infix 3 << >> ~>>

     (* How to align addresses *)
     fun align4 addr      = andb(addr,notb 3)
     fun align8 addr      = andb(addr,notb 7)
     fun align8Upper addr = orb(andb(addr,notb 7),4)

     fun %% l = (l : #64 bits)

     fun disp(b,d) = $r[b] + d

     fun byte x  = (x : #8 bits)
     fun word x  = (x : #16 bits)
     fun dword x = (x : #32 bits)
     fun qword x  = (x : #64 bits)
     fun float x = (x : #32 bits)
     fun double x  = (x : #64 bits)

     rtl LDA{r,b,d} = $r[r] := $r[b] + d
     rtl LDAH{r,b,d} = $r[r] := $r[b] + d << 16

     (* Integer loads *)
     rtl LDB{r,b,d,mem}    = $r[r] := sx (byte $m[disp(b,d):mem])
     rtl LDW{r,b,d,mem}    = $r[r] := sx (word $m[disp(b,d):mem])
     rtl LDBU{r,b,d,mem}   = $r[r] := zx (byte $m[disp(b,d):mem])
     rtl LDWU{r,b,d,mem}   = $r[r] := zx (word $m[disp(b,d):mem])
     rtl LDL{r,b,d,mem}    = $r[r] := sx (dword $m[disp(b,d):mem])
     rtl LDL_L{r,b,d,mem}  = $r[r] := sx (dword $m[align4(disp(b,d)):mem])
     rtl LDQ{r,b,d,mem}    = $r[r] := qword $m[disp(b,d):mem]
     rtl LDQ_L{r,b,d,mem}  = $r[r] := qword $m[align8(disp(b,d)):mem]
     rtl LDQ_U{r,b,d,mem}  = $r[r] := qword $m[align8Upper(disp(b,d)):mem]

     (* Integer stores *)
     rtl STB{r,b,d,mem}    = $m[disp(b,d):mem] := $r[r] at [0..7]
     rtl STW{r,b,d,mem}    = $m[disp(b,d):mem] := $r[r] at [0..15]
     rtl STL{r,b,d,mem}    = $m[disp(b,d):mem] := $r[r] at [0..31]
     rtl STQ{r,b,d,mem}    = $m[disp(b,d):mem] := $r[r] 
     rtl STQ_U{r,b,d,mem}  = $m[align8(disp(b,d)):mem] := $r[r] 

     (* Floating point loads *)
     rtl LDF{r,b,d,mem} = $f[r] := sx (float $m[disp(b,d):mem])
     rtl LDG{r,b,d,mem} = $f[r] := double $m[disp(b,d):mem] 
     rtl LDS{r,b,d,mem} = $f[r] := double $m[disp(b,d):mem] 
     rtl LDT{r,b,d,mem} = $f[r] := double $m[disp(b,d):mem]

     (* Floating point stores *)
     rtl STF{r,b,d,mem} = $m[disp(b,d):mem] := float(sx $f[r])
     rtl STG{r,b,d,mem} = $m[disp(b,d):mem] := $f[r]
     rtl STS{r,b,d,mem} = $m[disp(b,d):mem] := $f[r]
     rtl STT{r,b,d,mem} = $m[disp(b,d):mem] := $f[r]

     (* Integer operators *)
     rtl ADDL{ra,rb,rc}   = $r[rc] := sx($r[ra] + rb)
     rtl ADDQ{ra,rb,rc}   = $r[rc] := $r[ra] + rb
     fun cmp oper {ra,rb,rc} = $r[rc] := cond(oper($r[ra],rb),  1, 0)

     rtl [CMPBGE, CMPEQ, CMPLE, CMPLT, CMPULE, CMPULT] =
         map cmp [(>=), (==), (<=), (<), (leu), (ltu)]

     fun binop oper {ra,rb,rc} = $r[rc] := oper($r[ra], rb)

     rtl SUBL{ra,rb,rc}   = $r[rc] := sx($r[ra] - rb)
     rtl SUBQ{ra,rb,rc}   = $r[rc] := $r[ra] - rb
     rtl S4ADDL{ra,rb,rc} = $r[rc] := sx($r[ra] << 2 + rb)
     rtl S4ADDQ{ra,rb,rc} = $r[rc] := $r[ra] << 2 + rb
     rtl S4SUBL{ra,rb,rc} = $r[rc] := sx($r[ra] << 2 - rb)
     rtl S4SUBQ{ra,rb,rc} = $r[rc] := $r[ra] << 2 - rb
     rtl S8ADDL{ra,rb,rc} = $r[rc] := sx($r[ra] << 3 + rb)
     rtl S8ADDQ{ra,rb,rc} = $r[rc] := $r[ra] << 3 + rb
     rtl S8SUBL{ra,rb,rc} = $r[rc] := sx($r[ra] << 3 - rb)
     rtl S8SUBQ{ra,rb,rc} = $r[rc] := $r[ra] << 3 - rb
     rtl AND{ra,rb,rc}    = $r[rc] := andb($r[ra], rb)
     rtl BIC{ra,rb,rc}    = $r[rc] := andb($r[ra], notb(rb)) (* XXX *)
     rtl BIS{ra,rb,rc}    = $r[rc] := orb($r[ra], rb)
     rtl EQV{ra,rb,rc}    = $r[rc] := eqvb($r[ra], rb)
     rtl ORNOT{ra,rb,rc}  = $r[rc] := orb($r[ra], notb(rb))
     rtl XOR{ra,rb,rc}    = $r[rc] := xorb($r[ra], rb)

     rtl extbl extlh extll extqh extql extwh extwl insbl inslh insll
         insqh insql inswh inswl mskbl msklh mskll mskqh mskql mskwh mskwl 
          : #n bits * #n bits -> #n bits
     rtl [EXTBL, EXTLH, EXTLL, EXTQH, EXTQL, EXTWH, EXTWL,
          INSBL, INSLH, INSLL, INSQH, INSQL, INSWH, INSWL,
          MSKBL, MSKLH, MSKLL, MSKQH, MSKQL, MSKWH, MSKWL] =
         map binop 
         [extbl, extlh, extll, extqh, extql, extwh, extwl,
          insbl, inslh, insll, insqh, insql, inswh, inswl,
          mskbl, msklh, mskll, mskqh, mskql, mskwh, mskwl]

     rtl [SLL, SRA, SRL] = 
          map binop [(<<), (~>>), (>>)]

     rtl zap zapnot umulh : #n bits * #n bits -> #n bits
     rtl ZAP{ra,rb,rc} = $r[rc] := zap($r[ra], rb) 
     rtl ZAPNOT{ra,rb,rc} = $r[rc] := zapnot($r[ra], rb) 
     rtl MULL{ra,rb,rc}  = $r[rc] := sx(muls($r[ra], rb))
     rtl MULQ{ra,rb,rc}  = $r[rc] := muls($r[ra], rb)
     rtl UMULH{ra,rb,rc} = $r[rc] := umulh($r[ra], rb) 

     (* Integer trapping operators *)
     val overflowtrap = ()
     rtl ADDLV{ra,rb,rc} = ADDL{ra,rb,rc} || overflowtrap
     rtl ADDQV{ra,rb,rc} = ADDQ{ra,rb,rc} || overflowtrap
     rtl SUBLV{ra,rb,rc} = SUBL{ra,rb,rc} || overflowtrap
     rtl SUBQV{ra,rb,rc} = SUBQ{ra,rb,rc} || overflowtrap
     rtl MULLV{ra,rb,rc} = MULL{ra,rb,rc} || overflowtrap
     rtl MULQV{ra,rb,rc} = MULQ{ra,rb,rc} || overflowtrap

     fun lbc(x,y) = andb(x,1) == y
     fun lbs(x,y) = andb(x,1) <> y

     val comparisons = [(==), lbc, lbs, (>=), (>), (<=), (<), (<>)]

     (* Conditional moves *)
     fun cmov oper {ra,rb,rc} = if oper($r[ra], 0) then $r[rc] := rb else ()

     rtl CMOV ^^ [EQ, LBC, LBS, GE, GT, LE, LT, NE] =
         map cmov comparisons

     (* Integer branches *)
     rtl BR{lab} = Jmp(%%lab)
     rtl BSR{lab,r,defs,uses,mem} = 
         Call(%%lab) || 
         Kill $r[r] || 
         Kill $cellset[defs] ||
         Use $cellset[uses] ||
         $m[??? :mem] := ($m[??? :mem] : #8 bits)

     fun branch oper {r,lab} = if oper($r[r], 0) then Jmp(%%lab) else ()

     rtl [BEQ, BLBC, BLBS, BGE, BGT, BLE, BLT, BNE] =
         map branch comparisons
 
     (* Floating point operators *)

     val SU = ()
     val SUD = ()
     fun farith oper {fa,fb,fc} = $f[fc] := oper($f[fa], $f[fb])
     fun funary oper {fb,fc} = $f[fc] := oper($f[fb])
     rtl fops as [ADDS, ADDT, SUBS, SUBT, MULS, MULT, DIVS, DIVT] =
         map farith
         [fadd, fadd, fsub, fsub, fmul, fmul, fdiv, fdiv]
     fun su fop {fa,fb,fc} = fop{fa,fb,fc} || SU
     fun sud fop {fa,fb,fc} = fop{fa,fb,fc} || SUD 
     rtl [ADDSSU, ADDTSU, SUBSSU, SUBTSU, MULSSU, MULTSU, DIVSSU, DIVTSU] =
         map su fops
     rtl [ADDSSUD, ADDTSUD, SUBSSUD, SUBTSUD, 
          MULSSUD, MULTSUD, DIVSSUD, DIVTSUD] =
         map sud fops

     rtl cpys  cpyse  cpysn mf_fpcr mt_fpcr : #64 bits * #64 bits -> #64 bits
     rtl [CPYS,CPYSE, CPYSN, MF_FPCR, MT_FPCR] =
         map farith [cpys, cpyse, cpysn, mf_fpcr, mt_fpcr]

     rtl cvtlq cvtql  cvtqlsv cvtqlv cvtqs cvtqsc 
         cvtqt cvtqtc cvtts  cvttsc 
         cvtst cvtsts cvttq  cvttqc : #64 bits -> #64 bits

     rtl CVT^^[LQ,QL,QLSV,QLV,QS,QSC,QT,QTC,TS,TSC,ST,STS,TQ,TQC] =
          map funary cvt^^[lq,ql,qlsv,qlv,qs,qsc,qt,qtc,ts,tsc,st,sts,tq,tqc]
 
     rtl teq tlt tle tun : #64 bits * #64 bits -> #64 bits
     rtl fcmps as [CMPTEQ, CMPTLT, CMPTLE, CMPTUN] = 
            map farith [teq, tlt, tle, tun]
     rtl [CMPTEQSU, CMPTLTSU, CMPTLESU, CMPTUNSU] = 
            map su fcmps

     (* Floating point branches *)
     fun fbranch oper {f,lab} = if oper($f[f],???) then Jmp(%%lab) else ()
     rtl [FBEQ, FBLT, FBLE, FBNE, FBGE, FBGT] =
         map fbranch [|==|,  |<|,  |<=|, |<>|, |>=|, |>|]

     (* Floating point moves *)
     fun fcmove cmp {fa,fb,fc} = 
          if cmp($f[fa],???) then $f[fc] := $f[fb] else ()
     rtl FCMOV ^^ [EQ, LT, LE, NE, GE, GT] =
         map fcmove [|==|,  |<|,  |<=|, |<>|, |>=|, |>|]

     (* Call/return *)
     rtl JSR{r,b,defs,uses,mem} = 
         Call($r[b]) || 
         Kill $r[r]  || 
         Kill $cellset[defs] ||
         Use $cellset[uses] || 
         $m[??? :mem] := ($m[??? :mem] : #8 bits)
     rtl RET{r,b} = Jmp($r[b]) || Kill $r[r]
     rtl JMPL{r,b} = Jmp($r[b]) || Kill $r[r]
     rtl TRAPB{} = ()

     (* Pseudo arithmetic *)
     fun pseudoOp oper {ra,rb,rc,tmps} = 
         $r[rc] := oper($r[ra], rb) ||
         Kill $cellset[tmps] (* XXX *)
     rtl PSEUDOARITH_ ^^ [ DIVL, DIVLU, DIVQ, DIVQU,
                           REML, REMLU, REMQ, REMQU ] = 
         map pseudoOp    [ divs,  divu,  divs,  divu,   (* XXX *)
                           rems,  remu,  rems,  remu ]
     (* Pal code 
      * Note: I have no idea what these things are, so I'm just going
      * fake them
      *)
     rtl BPT BUGCHK CALLSYS GENTRAP IMB RDUNIQUE WRUNIQUE : #64 bits -> #64 bits
     fun CALL_PAL code {def,use} =
         Call(qword(code(qword 0))) || 
         Kill $cellset[def] ||
         Use $cellset[use]
     rtl CALL_PAL_ ^^ 
         [BPT, BUGCHK, CALLSYS, GENTRAP, IMB, RDUNIQUE, WRUNIQUE] =
         map CALL_PAL 
         [BPT, BUGCHK, CALLSYS, GENTRAP, IMB, RDUNIQUE, WRUNIQUE] 
   end (* RTL *)


   (*
    * Reservation tables and pipeline definitions for scheduling
    *)

   (* Function units *)
   resource issue and mem and alu and falu and fmul and fdiv and branch

   (* Different implementations of cpus *)
   cpu default 2 [2 issue, 2 mem, 1 alu]  (* 2 issue machine *)

   (* Definitions of various reservation tables *) 
   pipeline NOP _    = [issue] 
    and     ARITH _  = [issue^^alu]
    and     LOAD _   = [issue^^mem]
    and     STORE _  = [issue^^mem,mem,mem] 
    and     FARITH _ = [issue^^falu]
    and     FMUL _   = [issue^^fmul,fmul]
    and     FDIV _   = [issue^^fdiv,fdiv*50]
    and     BRANCH _ = [issue^^branch]

   (* 
    * We now specify the instruction representation, assembly,
    * machine code encoding and ``semantics''
    *)
   structure Instruction = 
   struct
      datatype ea = 
          Direct of $GP 
        | FDirect of $FP         
        | Displace of {base: $GP, disp: T.labexp, mem: Region.region}
    
      datatype operand = 
          REGop of $GP          ``<GP>''          rtl: $r[GP]
        | IMMop of int          ``<int>''         rtl: immed int
        | HILABop of T.labexp   ``hi(<labexp>)''  rtl: hi(labexp)
        | LOLABop of T.labexp   ``lo(<labexp>)''  rtl: lo(labexp)
        | LABop of T.labexp     ``<labexp>''      rtl: labexp
   
      (* 
       * When I say ! after the datatype name XXX, it means generate a
       * function emit_XXX that converts the constructors into the corresponding
       * assembly text.  By default, it uses the same name as the constructor,
       * but may be modified by the lowercase/uppercase assembly directive.
       * 
       *)
      datatype branch! =  (* table C-2 *)
         BR   0x30  
                   (*| BSR 0x34 *)
                              | BLBC 0x38
       | BEQ  0x39 | BLT 0x3a | BLE  0x3b
       | BLBS 0x3c | BNE 0x3d | BGE  0x3e 
       | BGT  0x3f
   
      datatype fbranch! = (* table C-2 *)
                     FBEQ 0x31 | FBLT 0x32
       | FBLE 0x33             | FBNE 0x35
       | FBGE 0x36 | FBGT 0x37 
    
      datatype load! =  (* table C-1 *)
         LDB
       | LDW
       | LDBU  0x02 
       | LDWU  0x04
       | LDL   0x28    
       | LDL_L 0x2A  
       | LDQ   0x29    
       | LDQ_L 0x2B 
       | LDQ_U 0x0B
      datatype store! = STB 0x0E | STW 0x0D | STL 0x2C | STQ 0x2D | STQ_U 0x0F
      datatype fload [0x20..0x23] ! = LDF | LDG | LDS | LDT 
      datatype fstore [0x24..0x27] ! = STF | STG | STS | STT 
   
      (* non-trapping opcodes *) 
      datatype operate! = (* table C-5 *)
          ADDL  (0wx10,0wx00)                       | ADDQ (0wx10,0wx20) 
                              | CMPBGE(0wx10,0wx0f) | CMPEQ (0wx10,0wx2d) 
        | CMPLE (0wx10,0wx6d) | CMPLT (0wx10,0wx4d) | CMPULE (0wx10,0wx3d) 
        | CMPULT(0wx10,0wx1d) | SUBL  (0wx10,0wx09) 
        | SUBQ  (0wx10,0wx29) 
        | S4ADDL(0wx10,0wx02) | S4ADDQ (0wx10,0wx22) | S4SUBL (0wx10,0wx0b)
        | S4SUBQ(0wx10,0wx2b) | S8ADDL (0wx10,0wx12) | S8ADDQ (0wx10,0wx32)
        | S8SUBL(0wx10,0wx1b) | S8SUBQ (0wx10,0wx3b) 
   
        | AND   (0wx11,0wx00) | BIC    (0wx11,0wx08) | BIS    (0wx11,0wx20)
                                                     | EQV (0wx11,0wx48)
        | ORNOT (0wx11,0wx28) | XOR    (0wx11,0wx40)
   
        | EXTBL (0wx12,0wx06) | EXTLH  (0wx12,0wx6a) | EXTLL(0wx12,0wx26)
        | EXTQH (0wx12,0wx7a) | EXTQL  (0wx12,0wx36) | EXTWH(0wx12,0wx5a)
        | EXTWL (0wx12,0wx16) | INSBL  (0wx12,0wx0b) | INSLH(0wx12,0wx67)
        | INSLL (0wx12,0wx2b) | INSQH  (0wx12,0wx77) | INSQL(0wx12,0wx3b)
        | INSWH (0wx12,0wx57) | INSWL  (0wx12,0wx1b) | MSKBL(0wx12,0wx02)
        | MSKLH (0wx12,0wx62) | MSKLL  (0wx12,0wx22) | MSKQH(0wx12,0wx72)
        | MSKQL (0wx12,0wx32) | MSKWH  (0wx12,0wx52) | MSKWL(0wx12,0wx12)
        | SLL   (0wx12,0wx39) | SRA    (0wx12,0wx3c) | SRL  (0wx12,0wx34)
        | ZAP   (0wx12,0wx30) | ZAPNOT (0wx12,0wx31)
        | MULL  (0wx13,0wx00)                        | MULQ (0wx13,0wx20)
                              | UMULH  (0wx13,0wx30) 
   
      (* conditional moves *) 
      datatype cmove! =
         CMOVEQ 0wx24 | CMOVLBC 0wx16 | CMOVLBS 0wx14
       | CMOVGE 0wx46 | CMOVGT  0wx66 | CMOVLE  0wx64
       | CMOVLT 0wx44 | CMOVNE  0wx26 
    
      datatype pseudo_op! = DIVL | DIVLU | DIVQ | DIVQU 
                          | REML | REMLU | REMQ | REMQU
    
      datatype operateV! = (* table C-5 opc/func *)
         ADDLV (0wx10,0wx40) | ADDQV (0wx10,0wx60)
       | SUBLV (0wx10,0wx49) | SUBQV (0wx10,0wx69) 
       | MULLV (0wx13,0wx40) | MULQV (0wx13,0wx60)
   
      datatype funary! = (* table C-6/C-7 *)
             (* C-6 *)
         CVTLQ   (0wx17,0wx010) | CVTQL (0wx17,0wx030) | CVTQLSV (0wx17,0wx530)
       | CVTQLV  (0wx17,0wx130)
   
             (* C-7 *)
       | CVTQS   (0wx16,0wxbc)  | CVTQSC  (0wx16,0wx3c)
       | CVTQT   (0wx16,0wxbe)  | CVTQTC  (0wx16,0wx3e)
       | CVTTS   (0wx16,0wxac)  | CVTTSC  (0wx16,0wx2c)
       | CVTST   (0wx16,0wx2ac) | CVTSTS  (0wx16,0wx6ac)
       | CVTTQ   (0wx16,0wxaf)  | CVTTQC  (0wx16,0wx2f)
    
      datatype foperate! =   (* table C-6 *)
         CPYS    (0wx17,0wx20)  | CPYSE    (0wx17,0wx022) | CPYSN (0wx17,0wx021)
       | MF_FPCR (0wx17,0wx025) | MT_FPCR  (0wx17,0wx024)
   
                            (* table C-7 *)
       | CMPTEQ  (0wx16,0wx0a5) | CMPTLT (0wx16,0wx0a6)  | CMPTLE (0wx16,0wx0a7)
       | CMPTUN  (0wx16,0wx0a4)
   
       | CMPTEQSU(0wx16,0wx5a5) | CMPTLTSU(0wx16,0wx5a6) |CMPTLESU(0wx16,0wx5a7)
       | CMPTUNSU(0wx16,0wx5a4)

       | ADDS (0wx16,0wx080) | ADDT (0wx16,0wx0a0) 
       | DIVS (0wx16,0wx083) | DIVT (0wx16,0wx0a3)
       | MULS (0wx16,0wx082) | MULT (0wx16,0wx0a2) 
       | SUBS (0wx16,0wx081) | SUBT (0wx16,0wx0a1)
   
      datatype fcmove! =
         FCMOVEQ 0wx02a | FCMOVGE 0wx02d | FCMOVGT 0wx02f
       | FCMOVLE 0wx02e | FCMOVLT 0wx02c | FCMOVNE 0wx02b
   
      datatype foperateV! = (* table C-7 *)
         ADDSSUD  0wx5c0  | ADDSSU 0wx580 
       | ADDTSUD  0wx5e0  | ADDTSU 0wx5a0 
       | DIVSSUD  0wx5c3  | DIVSSU 0wx583
       | DIVTSUD  0wx5e3  | DIVTSU 0wx5a3
       | MULSSUD  0wx5c2  | MULSSU 0wx582
       | MULTSUD  0wx5e2  | MULTSU 0wx5a2
       | SUBSSUD  0wx5c1  | SUBSSU 0wx581
       | SUBTSUD  0wx5e1  | SUBTSU 0wx5a1
    
      datatype osf_user_palcode! = 
         BPT 0x80 | BUGCHK 0x81 | CALLSYS 0x83 
       | GENTRAP 0xaa | IMB 0x86 | RDUNIQUE 0x9e | WRUNIQUE 0x9f

      type addressing_mode = CellsBasis.cell * operand
   
   end (* Instruction *)

   (*
    * Alpha has very simple instruction encoding formats.
    *)
   instruction formats 32 bits 
     Memory{opc:6, ra:5, rb:GP 5, disp: signed 16} (* p3-9 *)
      (* derived from Memory *) 
   | Split{le} = let val i = MLTreeEval.valueOf le
                     val w = itow i 
                     val hi = w ~>> 0w16
                     val lo = w && 0w65535
                 in  if lo < 0w32768 then (hi,lo) else (hi+0w1,lo-0w65536)
                 end 
   | High{le} = let val (hi,_) = Split{le=le} in hi end
   | Low{le}  = let val (_,lo) = Split{le=le} in lo end
   | LoadStore{opc,ra,rb,disp} =
       let val disp = 
           case disp of
             I.REGop rb => emit_GP rb
           | I.IMMop i  => itow i
           | I.HILABop le => High{le=le}
           | I.LOLABop le => Low{le=le}
           | I.LABop le => itow(MLTreeEval.valueOf le)
       in  Memory{opc,ra,rb,disp}
       end
   | ILoadStore{opc,r:GP,b,d} = LoadStore{opc,ra=r,rb=b,disp=d}
   | FLoadStore{opc,r:FP,b,d} = LoadStore{opc,ra=r,rb=b,disp=d}

   | Jump{opc:6=0wx1a,ra:GP 5,rb:GP 5,h:2,disp:int signed 14}   (* table C-3 *)
   | Memory_fun{opc:6, ra:GP 5, rb:GP 5, func:16}     (* p3-9 *)
   | Branch{opc:branch 6, ra:GP 5, disp:signed 21}           (* p3-10 *)
   | Bsr{opc:6=0wx34, ra:GP 5, disp:signed 21}           (* p3-10 *)
   | Fbranch{opc:fbranch 6, ra:FP 5, disp:signed 21}          (* p3-10 *)
        (* p3-11 *)
   | Operate0{opc:6,ra:GP 5,rb:GP 5,sbz:13..15=0,_:1=0,func:5..11,rc:GP 5} 
        (* p3-11 *)
   | Operate1{opc:6,ra:GP 5,lit:signed 13..20,_:1=1,func:5..11,rc:GP 5} 
   | Operate{opc,ra,rb,func,rc} =
        (case rb of
          I.REGop rb => Operate0{opc,ra,rb,func,rc}
        | I.IMMop i  => Operate1{opc,ra,lit=itow i,func,rc}
        | I.HILABop le => Operate1{opc,ra,lit=High{le=le},func,rc}
        | I.LOLABop le => Operate1{opc,ra,lit=Low{le=le},func,rc}
        | I.LABop le => Operate1{opc,ra,lit=itow(MLTreeEval.valueOf le),func,rc}
        )
   | Foperate{opc:6,fa:FP 5,fb:FP 5,func:5..15,fc:FP 5}
   | Funary{opc:6,fa:5=31,fb:FP 5,func:5..15,fc:FP 5}
   | Pal{opc:6=0,func:26}

   structure MC =
   struct
      (* compute displacement address *)
      fun disp lab = itow(Label.addrOf lab - !loc - 4) ~>> 0w2
      val zeroR = Option.valOf(C.zeroReg CellsBasis.GP)
   end

   structure Assembly =
   struct
      fun isZero(I.LABop le) = MLTreeEval.valueOf le = 0
        | isZero _ = false
   end

   (*
    * The main instruction set definition consists of the following:
    *  1) constructor-like declaration defines the view of the instruction,
    *  2) assembly directive in funny quotes `` '',
    *  3) machine encoding expression,
    *  4) delay slot directives etc (not necessary in this architecture)
    *) 
   instruction 

   (* Load/Store *)
     LDA of {r: $GP, b: $GP, d:operand}        (* use of REGop is illegal *)
     asm: if isZero d andalso CellsBasis.sameCell(r,b) then ()
          else (``lda\t<r>, <d>''; 
                if CellsBasis.registerId b = 31 then () else ``(<b>)''
               )
     mc:  ILoadStore{opc=0w08,r,b,d}
     rtl: ``LDA''

   | LDAH of {r: $GP, b: $GP, d:operand} (* use of REGop is illegal *)
     asm: (``ldah\t<r>, <d>''; 
           if CellsBasis.registerId b = 31 then () else ``(<b>)''
          )
     mc:  ILoadStore{opc=0w09,r,b,d}
     rtl: ``LDAH''

   | LOAD of {ldOp:load, r: $GP, b: $GP, d:operand, mem:Region.region}
     asm: ``<ldOp>\t<r>, <d>(<b>)<mem>''
     mc:  ILoadStore{opc=emit_load ldOp,r,b,d}
     rtl: ``<ldOp>''
     latency: 1

   | STORE of {stOp:store, r: $GP, b: $GP, d:operand, mem:Region.region}
     asm: ``<stOp>\t<r>, <d>(<b>)<mem>''
     mc:  ILoadStore{opc=emit_store stOp,r,b,d}
     rtl: ``<stOp>''

   | FLOAD of {ldOp:fload, r: $FP, b: $GP, d:operand, mem:Region.region}
     asm: ``<ldOp>\t<r>, <d>(<b>)<mem>''
     mc:  FLoadStore{opc=emit_fload ldOp,r,b,d}
     rtl: ``<ldOp>''
     latency: 1

   | FSTORE of {stOp:fstore, r: $FP, b: $GP, d:operand, mem:Region.region}
     asm: ``<stOp>\t<r>, <d>(<b>)<mem>''
     mc:  FLoadStore{opc=emit_fstore stOp,r,b,d}
     rtl: ``<stOp>''
 
   (* Control Instructions *)
   | JMPL of {r: $GP, b: $GP, d:int} * Label.label list
     asm: ``jmp\t<r>, (<b>)''
     mc:  Jump{h=0w0,ra=r,rb=b,disp=d}   (* table C-3 *)
     rtl: ``JMPL''

   | JSR of {r: $GP, b: $GP, d:int, 
             defs: $cellset, uses: $cellset, cutsTo: Label.label list,
             mem:Region.region}
     asm: ``jsr\t<r>, (<b>)<mem><emit_defs(defs)><emit_uses(uses)><emit_cutsTo cutsTo>''
     mc:  Jump{h=0w1,ra=r,rb=b,disp=d}
     rtl: ``JSR''

   | BSR of {r: $GP, lab: Label.label,
             defs: $cellset, uses: $cellset, cutsTo: Label.label list,
             mem:Region.region}
     asm: ``bsr\t<r>, <lab><mem><emit_defs(defs)><emit_uses(uses)><emit_cutsTo cutsTo>''
     mc:  Bsr{ra=r,disp=disp lab}
     rtl: ``BSR''

   | RET of {r: $GP, b: $GP, d:int} 
     asm: ``ret\t<r>, (<b>)''
     mc:  Jump{h=0w2,ra=r,rb=b,disp=d}
     rtl: ``RET''

   | BRANCH of {b:branch, r: $GP, lab:Label.label}
     asm: ``<b>\t<r>, <lab>''
     mc:  Branch{opc=b,ra=r,disp=disp lab}
     rtl: ``<b>''

   | FBRANCH of {b:fbranch, f: $FP, lab:Label.label}  
     asm: ``<b>\t<f>, <lab>''
     mc:  Fbranch{opc=b,ra=f,disp=disp lab}
     rtl: ``<b>''
 
   (* Integer Operate *)
   | OPERATE of {oper:operate, ra: $GP, rb:operand, rc: $GP}
             (* Pretty print ldgp differently *) 
     asm: let fun disp() = ``<oper>\t<ra>, <rb>, <rc>''
          in  case (oper,CellsBasis.registerId ra,rb,CellsBasis.registerId rc) of
                 (I.BIS,27,I.REGop rb,29) => 
                   if CellsBasis.registerId rb = 31 then ``ldgp\t$29, 0($27)''
                   else disp()
              |  (I.BIS,26,I.REGop rb,29) => 
                   if CellsBasis.registerId rb = 31 then ``ldgp\t$29, 0($26)''
                   else disp()
              | _                        => disp()
          end
     mc:  let val (opc,func) = emit_operate oper
          in  Operate{opc,func,ra,rb,rc} 
          end
     rtl: ``<oper>''

   | OPERATEV of {oper:operateV, ra: $GP, rb:operand, rc: $GP}
     asm: ``<oper>\t<ra>, <rb>, <rc>''
     mc:  let val (opc,func) = emit_operateV oper
          in  Operate{opc,func,ra,rb,rc} 
          end
     rtl: ``<oper>''

   | CMOVE of {oper:cmove, ra: $GP, rb:operand, rc: $GP}
     asm: ``<oper>\t<ra>, <rb>, <rc>''
     mc:  Operate{opc=0wx11,func=emit_cmove oper,ra,rb,rc} 
     rtl: ``<oper>''
 
   | PSEUDOARITH of {oper: pseudo_op, ra: $GP, rb:operand, rc: $GP, 
                     tmps: $cellset}
     asm: ``<oper>\t<ra>, <rb>, <rc><emit_cellset("tmps",tmps)>''
     rtl: ``PSEUDOARITH_<oper>''
 
   (* Floating Point Unary Operation *)
   | FUNARY of {oper:funary, fb: $FP, fc: $FP}
     asm: ``<oper>\t<fb>, <fc>''
     mc:  let val (opc,func) = emit_funary oper
          in  Funary{opc,func,fb,fc}
          end
     rtl: ``<oper>''

   (* Floating Point Operate *)
   | FOPERATE of {oper:foperate, fa: $FP, fb: $FP, fc: $FP}
     asm: ``<oper>\t<fa>, <fb>, <fc>''
     mc:  let val (opc,func) = emit_foperate oper
          in  Foperate{opc,func,fa,fb,fc}
          end
     rtl: ``<oper>''

   (* Trapping versions of the above (what trap -- allen) ??? *)
   | FOPERATEV of {oper:foperateV, fa: $FP, fb: $FP, fc: $FP}
     asm: ``<oper>\t<fa>, <fb>, <fc>''
     mc:  Foperate{opc=0wx16,func=emit_foperateV oper,fa,fb,fc}
     rtl: ``<oper>''

   | FCMOVE of {oper:fcmove, fa: $FP, fb: $FP, fc: $FP}
     asm: ``<oper>\t<fa>, <fb>, <fc>''
     mc:  Foperate{opc=0wx17,func=emit_fcmove oper,fa,fb,fc}
     rtl: ``<oper>''
 
   (* Misc *)
   | TRAPB                                (* Trap barrier *)
     asm: ``trapb''
     mc:  Memory_fun{opc=0wx18,ra=zeroR,rb=zeroR,func=0wx0}
     rtl: ``TRAPB''
 
   | CALL_PAL of {code:osf_user_palcode, def: $cellset, use: $cellset}
     asm: ``call_pal <code>''
     mc:  Pal{func=emit_osf_user_palcode code}
     rtl: ``CALL_PAL_<code>''

   | SOURCE of {}
     asm: ``source''
     mc:  ()

   | SINK of {}
     asm: ``sink''
     mc:  ()

   | PHI of {}
     asm: ``phi''
     mc:  ()

   structure SSA =
   struct
     fun operand(ty, I.REGop r) = T.REG(ty, r)
       | operand(ty, I.IMMop i) = T.LI(IntInf.fromInt i)
       | operand(ty, _) = error "operand"
   end

 end